2,305 research outputs found

    Artifact Removal Methods in EEG Recordings: A Review

    Get PDF
    To obtain the correct analysis of electroencephalogram (EEG) signals, non-physiological and physiological artifacts should be removed from EEG signals. This study aims to give an overview on the existing methodology for removing physiological artifacts, e.g., ocular, cardiac, and muscle artifacts. The datasets, simulation platforms, and performance measures of artifact removal methods in previous related research are summarized. The advantages and disadvantages of each technique are discussed, including regression method, filtering method, blind source separation (BSS), wavelet transform (WT), empirical mode decomposition (EMD), singular spectrum analysis (SSA), and independent vector analysis (IVA). Also, the applications of hybrid approaches are presented, including discrete wavelet transform - adaptive filtering method (DWT-AFM), DWT-BSS, EMD-BSS, singular spectrum analysis - adaptive noise canceler (SSA-ANC), SSA-BSS, and EMD-IVA. Finally, a comparative analysis for these existing methods is provided based on their performance and merits. The result shows that hybrid methods can remove the artifacts more effectively than individual methods

    Ongoing EEG artifact correction using blind source separation

    Full text link
    Objective: Analysis of the electroencephalogram (EEG) for epileptic spike and seizure detection or brain-computer interfaces can be severely hampered by the presence of artifacts. The aim of this study is to describe and evaluate a fast automatic algorithm for ongoing correction of artifacts in continuous EEG recordings, which can be applied offline and online. Methods: The automatic algorithm for ongoing correction of artifacts is based on fast blind source separation. It uses a sliding window technique with overlapping epochs and features in the spatial, temporal and frequency domain to detect and correct ocular, cardiac, muscle and powerline artifacts. Results: The approach was validated in an independent evaluation study on publicly available continuous EEG data with 2035 marked artifacts. Validation confirmed that 88% of the artifacts could be removed successfully (ocular: 81%, cardiac: 84%, muscle: 98%, powerline: 100%). It outperformed state-of-the-art algorithms both in terms of artifact reduction rates and computation time. Conclusions: Fast ongoing artifact correction successfully removed a good proportion of artifacts, while preserving most of the EEG signals. Significance: The presented algorithm may be useful for ongoing correction of artifacts, e.g., in online systems for epileptic spike and seizure detection or brain-computer interfaces.Comment: 16 pages, 4 figures, 3 table

    EEG Artifact Removal Using a Wavelet Neural Network

    Get PDF
    !n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data

    AR2, a novel automatic muscle artifact reduction software method for ictal EEG interpretation: Validation and comparison of performance with commercially available software.

    Get PDF
    Objective: To develop a novel software method (AR2) for reducing muscle contamination of ictal scalp electroencephalogram (EEG), and validate this method on the basis of its performance in comparison to a commercially available software method (AR1) to accurately depict seizure-onset location. Methods: A blinded investigation used 23 EEG recordings of seizures from 8 patients. Each recording was uninterpretable with digital filtering because of muscle artifact and processed using AR1 and AR2 and reviewed by 26 EEG specialists. EEG readers assessed seizure-onset time, lateralization, and region, and specified confidence for each determination. The two methods were validated on the basis of the number of readers able to render assignments, confidence, the intra-class correlation (ICC), and agreement with other clinical findings. Results: Among the 23 seizures, two-thirds of the readers were able to delineate seizure-onset time in 10 of 23 using AR1, and 15 of 23 using AR2 (

    Validating and improving the correction of ocular artifacts in electro-encephalography

    Get PDF
    For modern applications of electro-encephalography, including brain computer interfaces and single-trial Event Related Potential detection, it is becoming increasingly important that artifacts are accurately removed from a recorded electro-encephalogram (EEG) without affecting the part of the EEG that reflects cerebral activity. Ocular artifacts are caused by movement of the eyes and the eyelids. They occur frequently in the raw EEG and are often the most prominent artifacts in EEG recordings. Their accurate removal is therefore an important procedure in nearly all electro-encephalographic research. As a result of this, a considerable number of ocular artifact correction methods have been introduced over the past decades. A selection of these methods, which contains some of the most frequently used correction methods, is given in Section 1.5. When two different correction methods are applied to the same raw EEG, this usually results in two different corrected EEGs. A measure for the accuracy of correction should indicate how well each of these corrected EEGs recovers the part of the raw EEG that truly reflects cerebral activity. The fact that this accuracy cannot be determined directly from a raw EEG is intrinsic to the need for artifact removal. If, based on a raw EEG, it would be possible to derive an exact reference on what the corrected EEG should be, then there would not be any need for adequate artifact correction methods. Estimating the accuracy of correction methods is mostly done either by using models to simulate EEGs and artifacts, or by manipulating the experimental data in such a way that the effects of artifacts to the raw EEG can be isolated. In this thesis, modeling of EEG and artifact is used to validate correction methods based on simulated data. A new correction method is introduced which, unlike all existing methods, uses a camera to monitor eye(lid) movements as a basis for ocular artifact correction. The simulated data is used to estimate the accuracy of this new correction method and to compare it against the estimated accuracy of existing correction methods. The results of this comparison suggest that the new method significantly increases correction accuracy compared to the other methods. Next, an experiment is performed, based on which the accuracy of correction can be estimated on raw EEGs. Results on this experimental data comply very well with the results on the simulated data. It is therefore concluded that using a camera during EEG recordings provides valuable extra information that can be used in the process of ocular artifact correction. In Chapter 2, a model is introduced that assists in estimating the accuracy of eye movement artifacts for simulated EEG recordings. This model simulates EEG and eye movement artifacts simultaneously. For this, the model uses a realistic representation of the head, multiple dipoles to model cerebral and ocular electrical activity, and the boundary element method to calculate changes in electrical potential at different positions on the scalp. With the model, it is possible to simulate different data sets as if they are recorded using different electrode configurations. Signal to noise ratios are used to assess the accuracy of these six correction methods for various electrode configurations before and after applying six different correction methods. Results show that out of the six methods, second order blind identification, SOBI, and multiple linear regression, MLR, correct most accurately overall as they achieve the highest rise in signal to noise ratio. The occurrence of ocular artifacts is linked to changes in eyeball orientation. In Chapter 2 an eye tracker is used to record pupil position, which is closely linked to eyeball orientation. The pupil position information is used in the model to simulate eye movements. Recognizing the potential benefit of using an eye tracker not only for simulations, but also for correction, Chapter 3 introduces an eye movement artifact correction method that exploits the pupil position information that is provided by an eye tracker. Other correction methods use the electrooculogram (EOG) and/or the EEG to estimate ocular artifacts. Because both the EEG and the EOG recordings are susceptive to cerebral activity as well as to ocular activity, these other methods are at risk of overcorrecting the raw EEG. Pupil position information provides a reference that is linked to the ocular artifact in the EEG but that cannot be affected by cerebral activity, and as a result the new correction method avoids having to solve traditionally problematic issues like forward/backward propagation and evaluating the accuracy of component extraction. By using both simulated and experimental data, it is determined how pupil position influences the raw EEG and it is found that this relation is linear or quadratic. A Kalman filter is used for tuning of the parameters that specify the relation. On simulated data, the new method performs very well, resulting in an SNR after correction of over 10 dB for various patterns of eye movements. When compared to the three methods that performed best in the evaluation of Chapter 2, only the SOBI method which performed best in that evaluation shows similar results for some of the eye movement patterns. However, a serious limitation of the correction method is its inability to correct blink artifacts. In order to increase the variety of applications for which the new method can be used, the new correction should be improved in a way that enables it to correct the raw EEG for blinking artifacts. Chapter 4 deals with implementing such improvements based on the idea that a more advanced eye-tracker should be able to detect both the pupil position and the eyelid position. The improved eye tracker-based ocular artifact correction method is named EYE. Driven by some practical limitations regarding the eye tracking device currently available to us, an alternative way to estimate eyelid position is suggested, based on an EOG recorded above one eye. The EYE method can be used with both the eye tracker information or with the EOG substitute. On simulated data, accuracy of the EYE method is estimated using the EOGbased eyelid reference. This accuracy is again compared against the six other correction methods. Two different SNR-based measures of accuracy are proposed. One of these quantifies the correction of the entire simulated data set and the other focuses on those segments containing simulated blinking artifacts. After applying EYE, an average SNR of at least 9 dB for both these measures is achieved. This implies that the power of the corrected signal is at least eight times the power of the remaining noise. The simulated data sets contain a wide range of eye movements and blink frequencies. For almost all of these data sets, 16 out of 20, the correction results for EYE are better than for any of the other evaluated correction method. On experimental data, the EYE method appears to adequately correct for ocular artifacts as well. As the detection of eyelid position from the EOG is in principle inferior to the detection of eyelid position with the use of an eye tracker, these results should also be considered as an indicator of even higher accuracies that could be obtained with a more advanced eye tracker. Considering the simplicity of the MLR method, this method also performs remarkably well, which may explain why EOG-based regression is still often used for correction. In Chapter 5, the simulation model of Chapter 2 is put aside and, alternatively, experimentally recorded data is manipulated in a way that correction inaccuracies can be highlighted. Correction accuracies of eight correction methods, including EYE, are estimated based on data that are recorded during stop-signal tasks. In the analysis of these tasks it is essential that ocular artifacts are adequately removed because the task-related ERPs, are located mostly at frontal electrode positions and are low-amplitude. These data are corrected and subsequently evaluated. For the eight methods, the overall ranking of estimated accuracy in Figure 5.3, corresponds very well with the correction accuracy of these methods on simulated data as was found in Chapter 4. In a single-trial correction comparison, results suggest that the EYE corrected EEG, is not susceptible to overcorrection, whereas the other corrected EEGs are

    Automatic classification of ICA components from infant EEG using MARA.

    Get PDF
    Automated systems for identifying and removing non-neural ICA components are growing in popularity among EEG researchers of adult populations. Infant EEG data differs in many ways from adult EEG data, but there exists almost no specific system for automated classification of source components from paediatric populations. Here, we adapt one of the most popular systems for adult ICA component classification for use with infant EEG data. Our adapted classifier significantly outperformed the original adult classifier on samples of naturalistic free play EEG data recorded from 10 to 12-month-old infants, achieving agreement rates with the manual classification of over 75% across two validation studies (n = 44, n = 25). Additionally, we examined both classifiers' ability to remove stereotyped ocular artifact from a basic visual processing ERP dataset compared to manual ICA data cleaning. Here, the new classifier performed on level with expert manual cleaning and was again significantly better than the adult classifier at removing artifact whilst retaining a greater amount of genuine neural signal operationalised through comparing ERP activations in time and space. Our new system (iMARA) offers developmental EEG researchers a flexible tool for automatic identification and removal of artifactual ICA components

    Wavelet-Based Artifact Identification and Separation Technique for EEG Signals during Galvanic Vestibular Stimulation

    Get PDF
    We present a new method for removing artifacts in electroencephalography (EEG) records during Galvanic Vestibular Stimulation (GVS). The main challenge in exploiting GVS is to understand how the stimulus acts as an input to brain. We used EEG to monitor the brain and elicit the GVS reflexes. However, GVS current distribution throughout the scalp generates an artifact on EEG signals. We need to eliminate this artifact to be able to analyze the EEG signals during GVS. We propose a novel method to estimate the contribution of the GVS current in the EEG signals at each electrode by combining time-series regression methods with wavelet decomposition methods. We use wavelet transform to project the recorded EEG signal into various frequency bands and then estimate the GVS current distribution in each frequency band. The proposed method was optimized using simulated signals, and its performance was compared to well-accepted artifact removal methods such as ICA-based methods and adaptive filters. The results show that the proposed method has better performance in removing GVS artifacts, compared to the others. Using the proposed method, a higher signal to artifact ratio of −1.625 dB was achieved, which outperformed other methods such as ICA-based methods, regression methods, and adaptive filters

    Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been shown to reliably identify muscle artifacts.</p> <p>Methods</p> <p>We propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects.</p> <p>Results</p> <p>Based on six features only, the optimized linear classifier performed on level with the inter-expert disagreement (<it><</it>10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components.</p> <p>Conclusions</p> <p>We propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies.</p
    corecore