9,492 research outputs found

    Approximate least trimmed sum of squares fitting and applications in image analysis

    Get PDF
    The least trimmed sum of squares (LTS) regression estimation criterion is a robust statistical method for model fitting in the presence of outliers. Compared with the classical least squares estimator, which uses the entire data set for regression and is consequently sensitive to outliers, LTS identifies the outliers and fits to the remaining data points for improved accuracy. Exactly solving an LTS problem is NP-hard, but as we show here, LTS can be formulated as a concave minimization problem. Since it is usually tractable to globally solve a convex minimization or concave maximization problem in polynomial time, inspired by [1], we instead solve LTS’ approximate complementary problem, which is convex minimization. We show that this complementary problem can be efficiently solved as a second order cone program. We thus propose an iterative procedure to approximately solve the original LTS problem. Our extensive experiments demonstrate that the proposed method is robust, efficient and scalable in dealing with problems where data are contaminated with outliers. We show several applications of our method in image analysis.Fumin Shen, Chunhua Shen, Anton van den Hengel and Zhenmin Tan

    FAME: Face Association through Model Evolution

    Full text link
    We attack the problem of learning face models for public faces from weakly-labelled images collected from web through querying a name. The data is very noisy even after face detection, with several irrelevant faces corresponding to other people. We propose a novel method, Face Association through Model Evolution (FAME), that is able to prune the data in an iterative way, for the face models associated to a name to evolve. The idea is based on capturing discriminativeness and representativeness of each instance and eliminating the outliers. The final models are used to classify faces on novel datasets with possibly different characteristics. On benchmark datasets, our results are comparable to or better than state-of-the-art studies for the task of face identification.Comment: Draft version of the stud

    Provable Self-Representation Based Outlier Detection in a Union of Subspaces

    Full text link
    Many computer vision tasks involve processing large amounts of data contaminated by outliers, which need to be detected and rejected. While outlier detection methods based on robust statistics have existed for decades, only recently have methods based on sparse and low-rank representation been developed along with guarantees of correct outlier detection when the inliers lie in one or more low-dimensional subspaces. This paper proposes a new outlier detection method that combines tools from sparse representation with random walks on a graph. By exploiting the property that data points can be expressed as sparse linear combinations of each other, we obtain an asymmetric affinity matrix among data points, which we use to construct a weighted directed graph. By defining a suitable Markov Chain from this graph, we establish a connection between inliers/outliers and essential/inessential states of the Markov chain, which allows us to detect outliers by using random walks. We provide a theoretical analysis that justifies the correctness of our method under geometric and connectivity assumptions. Experimental results on image databases demonstrate its superiority with respect to state-of-the-art sparse and low-rank outlier detection methods.Comment: 16 pages. CVPR 2017 spotlight oral presentatio

    Learning how to be robust: Deep polynomial regression

    Get PDF
    Polynomial regression is a recurrent problem with a large number of applications. In computer vision it often appears in motion analysis. Whatever the application, standard methods for regression of polynomial models tend to deliver biased results when the input data is heavily contaminated by outliers. Moreover, the problem is even harder when outliers have strong structure. Departing from problem-tailored heuristics for robust estimation of parametric models, we explore deep convolutional neural networks. Our work aims to find a generic approach for training deep regression models without the explicit need of supervised annotation. We bypass the need for a tailored loss function on the regression parameters by attaching to our model a differentiable hard-wired decoder corresponding to the polynomial operation at hand. We demonstrate the value of our findings by comparing with standard robust regression methods. Furthermore, we demonstrate how to use such models for a real computer vision problem, i.e., video stabilization. The qualitative and quantitative experiments show that neural networks are able to learn robustness for general polynomial regression, with results that well overpass scores of traditional robust estimation methods.Comment: 18 pages, conferenc
    • …
    corecore