222 research outputs found

    On-line modeling and control via T-S fuzzy models for nonaffine nonlinear systems using a second type adaptive fuzzy approach

    Get PDF
    [[abstract]]This paper proposes a novel method for on-line modeling and robust adaptive control via Takagi-Sugeno (T-S) fuzzy models for nonaffine nonlinear systems, with external disturbances. The T-S fuzzy model is established to approximate the nonaffine nonlinear dynamic system in a linearized way. The so-called second type adaptive law is adopted, where not only the consequent part (the weighting factors) of fuzzy implications but also the antecedent part (the membership functions) of fuzzy implications are adjusted. Fuzzy B-spline membership functions (BMFs) are used for on-line tuning. Furthermore, the effect of all the unmodeled dynamics, BMF modeling errors and external disturbances on the tracking error is attenuated by a fuzzy error compensator which is also constructed from the T-S fuzzy model. In this paper, we can prove that the closed-loop system which is controlled by the proposed controller is stable and the tracking error will converge to zero. Three examples are simulated in order to confirm the effectiveness and applicability of the proposed methods in this paper.[[notice]]補正完

    An Alternative Nonlinear Lyapunov Redesign Velocity Controller for an Electrohydraulic Drive

    Get PDF
    This research aims at developing control law strategies that improve the performances and the robustness of electrohydraulic servosystems (EHSS) operation while considering easy implementation. To address the strongly nonlinear nature of the EHSS, a number of control algorithms based on backstepping approach is intensively used in the literature. The main contribution of this paper is to consider an alternative approach to synthetize a Lyapunov redesign nonlinear EHSS velocity controller. The proposed control law design is based on an appropriate choice of the control lyapunov function (clf), the extension of the Sontag formula and the construction of a nonlinear observer. The clf includes all the three system variable states in a positive define function. The Sontag formula is used in the time derivative of our clf in order to ensure an asymptotic stabilizing controller for regulating and tracking objectives. A nonlinear observer is developed in order to bring to the proposed controller the estimated values of the first and the second time output derivatives. The design, the tuning implementation and the performances of the proposed controller are compared to those of its equivalent backstepping controller. It is shown that the proposed controller is easier to design with simple implementation tuning while the backstepping controller has several complex design steps and implementation tuning issue. Moreover, the best performances especially under disturbance in the viscous damping are achieved with the proposed controller

    MACE II - A Space Shuttle experiment for investigating adaptive control of flexible spacecraft

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76987/1/AIAA-1998-4319-483.pd

    NASA Center for Intelligent Robotic Systems for Space Exploration

    Get PDF
    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE

    Robust and Decentralized Control of Web Winding Systems

    Get PDF
    This research addresses the velocity and tension regulation problems in web handling, including those found in the single element of an accumulator and those in the large-scale system settings. A continuous web winding system is a complex large-scale interconnected dynamics system with numerous tension zones to transport the web while processing it. A major challenge in controlling such systems is the unexpected disturbances that propagate through the system and affect both tension and velocity loops along the way. To solve this problem, a unique active disturbance rejection control (ADRC) strategy is proposed. Simulation results show remarkable disturbance rejection capability of the proposed control scheme in coping with large dynamic variations commonly seen in web winding systems. Another complication in web winding system stems from its large-scale and interconnected dynamics which makes control design difficult. This motivates the research in formulating a novel robust decentralized control strategy. The key idea in the proposed approach is that nonlinearities and interactions between adjunct subsystems are regarded as perturbations, to be estimated by an augmented state observer and rejected in the control loop, therefore making the local control design extremely simple. The proposed decentralized control strategy was implemented on a 3-tension-zone web winding processing line. Simulation results show that the proposed control method leads to much better tension and velocity regulation quality than the existing controller common in industry. Finally, this research tackles the challenging problem of stability analysis. Although ADRC has demonstrated the validity and advantage in many applications, the rigorous stability study has not been fully addressed previously. To this end, stability characterization of ADRC is carried out in this work. The closed-loop system is first reformulated, resulting in a form that allows the application of the well established singular perturbation method. Based on the decom

    Theoretical and experimental application of neural networks in spaceflight control systems

    Get PDF
    “Spaceflight systems can enable advanced mission concepts that can help expand our understanding of the universe. To achieve the objectives of these missions, spaceflight systems typically leverage guidance and control systems to maintain some desired path and/or orientation of their scientific instrumentation. A deep understanding of the natural dynamics of the environment in which these spaceflight systems operate is required to design control systems capable of achieving the desired scientific objectives. However, mitigating strategies are critically important when these dynamics are unknown or poorly understood and/or modelled. This research introduces two neural network methodologies to control the translation and rotation dynamics of spaceflight systems. The first method uses a neural network to perform nonlinear estimation in the control space for both translational and attitude control. The second method uses an observer with a neural network to perform estimation outside the control space, and input-output feedback linearization using the estimated dynamics for both translational and attitude control. The methods are demonstrated for attitude control through simulation and hardware testing on the Wallops Arc-Second Pointer, a high-altitude balloon-borne spaceflight system. Results show that the two new methodologies can provide improved attitude control performance over the heritage control system. The methods are also demonstrated for translational and attitude control of two small spacecraft in a deep space environment, where they provide improved position and attitude control performance as compared to a traditional control method. This work demonstrates, through simulation and hardware testing, that the two neural network methods presented can offer improved translational and attitude control performance of spaceflight systems where the dynamic environment may be unknown or poorly understood and/or modeled”--Abstract, page iv
    corecore