10,205 research outputs found

    Robust Reconfiguration of Cloud Applications

    No full text
    International audienceCloud applications involve a set of interconnected software components running on remote virtual machines. Once cloud applications are deployed, one may need to reconfigure them by adding/removing virtual machines or components hosted on these machines. These tasks are error-prone since they must preserve the application consistency and respect important architectural invariants related to software dependencies. We present in this paper a protocol for automating these reconfiguration tasks

    Robust and reliable reconfiguration of cloud applications

    Get PDF
    International audienceCloud applications involve a set of interconnected software components running on remote virtual machines. The deployment and dynamic reconfigu-ration of cloud applications, involving the addition/removal of virtual machines and components hosted on these virtual machines, are error-prone tasks. They must preserve the application consistency and respect important architectural invariants related to software dependencies. In this paper, we introduce a protocol for automating these reconfiguration tasks. In order to ensure its correctness and robustness, we implement the protocol with the support of the Maude system for rapid prototyping purposes, and we verify it with its formal analysis tools

    Robust Reconfiguration of Cloud Applications

    Get PDF
    International audienceCloud applications involve a set of interconnected software components running on remote virtual machines. Once cloud applications are deployed, one may need to reconfigure them by adding/removing virtual machines or components hosted on these machines. These tasks are error-prone since they must preserve the application consistency and respect important architectural invariants related to software dependencies. We present in this paper a protocol for automating these reconfiguration tasks

    Towards a unified management of applications on heterogeneous clouds

    Get PDF
    J. Carrasco, F. Durán y E. Pimentel. "Towards a Unified Management of Applications on Heterogeneous Clouds". Proceedings of the PhD Symposium at the 5th European Conference on Service-Oriented and Cloud Computing. G. Zavattaro and W. Zimmermann (eds). University Halle-Wittenberg. Technical Report 2016/02, 40-47. 2016.The diversity in the way cloud providers o↵er their services, give their SLAs, present their QoS, or support di↵erent technologies, makes very difficult the portability and interoperability of cloud applications, and favours the well-known vendor lock-in problem. We propose a model to describe cloud applications and the required resources in an agnostic, and providers- and resources-independent way, in which individual application modules, and entire applications, may be re-deployed using different services without modification. To support this model, and after the proposal of a variety of cross-cloud application management tools by different authors, we propose going one step further in the unification of cloud services with a management approach in which IaaS and PaaS services are integrated into a unified interface. We provide support for deploying applications whose components are distributed on different cloud providers, indistinctly using IaaS and PaaS services.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Joint Energy Efficient and QoS-aware Path Allocation and VNF Placement for Service Function Chaining

    Full text link
    Service Function Chaining (SFC) allows the forwarding of a traffic flow along a chain of Virtual Network Functions (VNFs, e.g., IDS, firewall, and NAT). Software Defined Networking (SDN) solutions can be used to support SFC reducing the management complexity and the operational costs. One of the most critical issues for the service and network providers is the reduction of energy consumption, which should be achieved without impact to the quality of services. In this paper, we propose a novel resource (re)allocation architecture which enables energy-aware SFC for SDN-based networks. To this end, we model the problems of VNF placement, allocation of VNFs to flows, and flow routing as optimization problems. Thereafter, heuristic algorithms are proposed for the different optimization problems, in order find near-optimal solutions in acceptable times. The performance of the proposed algorithms are numerically evaluated over a real-world topology and various network traffic patterns. The results confirm that the proposed heuristic algorithms provide near optimal solutions while their execution time is applicable for real-life networks.Comment: Extended version of submitted paper - v7 - July 201

    Component-wise application migration in bidimensional cross-cloud environments

    Get PDF
    We propose an algorithm for the migration of cloud applications' components between different providers, possibly changing their service level between IaaS and PaaS. Our solution relies on three of the key ingredients of the trans-cloud approach: a unified API, agnostic topology descriptions, and mechanisms for the independent specification of providers. We show how our approach allows us to overcome some of the current interoperability and portability issues of cloud environments to propose a solution for migration, present an implementation of our proposed solution, and illustrate it with a case study and experimental results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    CATS: linearizability and partition tolerance in scalable and self-organizing key-value stores

    Get PDF
    Distributed key-value stores provide scalable, fault-tolerant, and self-organizing storage services, but fall short of guaranteeing linearizable consistency in partially synchronous, lossy, partitionable, and dynamic networks, when data is distributed and replicated automatically by the principle of consistent hashing. This paper introduces consistent quorums as a solution for achieving atomic consistency. We present the design and implementation of CATS, a distributed key-value store which uses consistent quorums to guarantee linearizability and partition tolerance in such adverse and dynamic network conditions. CATS is scalable, elastic, and self-organizing; key properties for modern cloud storage middleware. Our system shows that consistency can be achieved with practical performance and modest throughput overhead (5%) for read-intensive workloads
    • …
    corecore