20 research outputs found

    Research on digital image watermark encryption based on hyperchaos

    Get PDF
    The digital watermarking technique embeds meaningful information into one or more watermark images hidden in one image, in which it is known as a secret carrier. It is difficult for a hacker to extract or remove any hidden watermark from an image, and especially to crack so called digital watermark. The combination of digital watermarking technique and traditional image encryption technique is able to greatly improve anti-hacking capability, which suggests it is a good method for keeping the integrity of the original image. The research works contained in this thesis include: (1)A literature review the hyperchaotic watermarking technique is relatively more advantageous, and becomes the main subject in this programme. (2)The theoretical foundation of watermarking technologies, including the human visual system (HVS), the colour space transform, discrete wavelet transform (DWT), the main watermark embedding algorithms, and the mainstream methods for improving watermark robustness and for evaluating watermark embedding performance. (3) The devised hyperchaotic scrambling technique it has been applied to colour image watermark that helps to improve the image encryption and anti-cracking capabilities. The experiments in this research prove the robustness and some other advantages of the invented technique. This thesis focuses on combining the chaotic scrambling and wavelet watermark embedding to achieve a hyperchaotic digital watermark to encrypt digital products, with the human visual system (HVS) and other factors taken into account. This research is of significant importance and has industrial application value

    Recent Advances in Industrial and Applied Mathematics

    Get PDF
    This open access book contains review papers authored by thirteen plenary invited speakers to the 9th International Congress on Industrial and Applied Mathematics (Valencia, July 15-19, 2019). Written by top-level scientists recognized worldwide, the scientific contributions cover a wide range of cutting-edge topics of industrial and applied mathematics: mathematical modeling, industrial and environmental mathematics, mathematical biology and medicine, reduced-order modeling and cryptography. The book also includes an introductory chapter summarizing the main features of the congress. This is the first volume of a thematic series dedicated to research results presented at ICIAM 2019-Valencia Congress

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Recent Advances in Industrial and Applied Mathematics

    Get PDF
    This open access book contains review papers authored by thirteen plenary invited speakers to the 9th International Congress on Industrial and Applied Mathematics (Valencia, July 15-19, 2019). Written by top-level scientists recognized worldwide, the scientific contributions cover a wide range of cutting-edge topics of industrial and applied mathematics: mathematical modeling, industrial and environmental mathematics, mathematical biology and medicine, reduced-order modeling and cryptography. The book also includes an introductory chapter summarizing the main features of the congress. This is the first volume of a thematic series dedicated to research results presented at ICIAM 2019-Valencia Congress

    Proceedings of AUTOMATA 2011 : 17th International Workshop on Cellular Automata and Discrete Complex Systems

    Get PDF
    International audienceThe proceedings contain full (reviewed) papers and short (non reviewed) papers that were presented at the workshop

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Improving Quantum Key Distribution and Quantum Random Number Generation in presence of Noise

    Get PDF
    The argument of this thesis might be summed up as the exploitation of the noise to generate better noise. More specifically this work is about the possibility of exploiting classic noise to effectively transmit quantum information and measuring quantum noise to generate better quantum randomness. What do i mean by exploiting classical noise to transmit effectively quantum information? In this case I refer to the task of sending quantum bits through the atmosphere in order set up transmissions of quantum key distribution (QKD) and this will be the subject of Chapter 1 and Chapter 2. In the Quantum Communications framework, QKD represents a topic with challenging problems both theoretical and experimental. In principle QKD offers unconditional security, however practical realizations of it must face all the limitations of the real world. One of the main limitation are the losses introduced by real transmission channels. Losses cause errors and errors make the protocol less secure because an eavesdropper could try to hide his activity behind the losses. When this problem is addressed under a full theoretical point of view, one tries to model the effect of losses by means of unitary transforms which affect the qubits in average according a fixed level of link attenuation. However this approach is somehow limiting because if one has a high level of background noise and the losses are assumed in average constant, it could happen that the protocol might abort or not even start, being the predicted QBER to high. To address this problem and generate key when normally it would not be possible, we have proposed an adaptive real time selection (ARTS) scheme where transmissivity peaks are instantaneously detected. In fact, an additional resource may be introduced to estimate the link transmissivity in its intrinsic time scale with the use of an auxiliary classical laser beam co-propagating with the qubits but conveniently interleaved in time. In this way the link scintillation is monitored in real time and the selection of the time intervals of high channel transmissivity corresponding to a viable QBER for a positive key generation is made available. In Chapter 2 we present a demonstration of this protocol in conditions of losses equivalent to long distance and satellite links, and with a range of scintillation corresponding to moderate to severe weather. A useful criterion for the preselection of the low QBER interval is presented that employs a train of intense pulses propagating in the same path as the qubits, with parameters chosen such that its fluctuation in time reproduces that of the quantum communication. For what concern the content of Chapter 3 we describe a novel principle for true random number generator (TRNG) which is based on the observation that a coherent beam of light crossing a very long path with atmospheric turbulence may generate random and rapidly varying images. To implement our method in a proof of concept demonstrator, we have chosen a very long free space channel used in the last years for experiments in Quantum Communications at the Canary Islands. Here, after a propagation of 143 km at an altitude of the terminals of about 2400 m, the turbulence in the path is converted into a dynamical speckle at the receiver. The source of entropy is then the atmospheric turbulence. Indeed, for such a long path, a solution of the Navier-Stokes equations for the {atmospheric flow in which the beam propagates is out of reach. Several models are based on the Kolmogorov statistical theory, which parametrizes the repartition of kinetic energy as the interaction of decreasing size eddies. However, such models only provide a statistical description for the spot of the beam and its wandering and never an instantaneous prediction for the irradiance distribution. These are mainly ruled by temperature variations and by the wind and cause fluctuations in the air refractive index. For such reason, when a laser beam is sent across the atmosphere, this latter may be considered as a dynamic volumetric scatterer which distorts the beam wavefront. We will evaluate the experimental data to ensure that the images are uniform and independent. Moreover, we will assess that our method for the randomness extraction based on the combinatorial analysis is optimal in the context of Information Theory. In Chapter 5 we will present a new approach for what concerns the generation of random bits from quantum physical processes. Quantum Mechanics has been always regarded as a possible and valuable source of randomness, because of its intrinsic probabilistic Nature. However the typical paradigm is employed to extract random number from a quantum system it commonly assumes that the state of said system is pure. Such assumption, only in theory would lead to full and unpredictable randomness. The main issue however it is that in real implementations, such as in a laboratory or in some commercial device, it is hardly possible to forge a pure quantum state. One has then to deal with quantum state featuring some degree of mixedness. A mixed state however might be somehow correlated with some other system which is hold by an adversary, a quantum eavesdropper. In the extreme case of a full mixed state, practically one it is like if he is extracting random numbers from a classical state. In order to do that we will show how it is important to shift from a classical randomness estimator, such as the min-classical entropy H-min(Z) of a random variable Z to quantum ones such as the min-entropy conditioned on quantum side information E. We have devised an effective protocol based on the entropic uncertainty principle for the estimation of the min-conditional entropy. The entropic uncertainty principle lets one to take in account the information which is shared between multiple parties holding a multipartite quantum system and, more importantly, lets one to bound the information a party has on the system state after that it has been measured. We adapted such principle to the bipartite case where an user Alice, A, is supplied with a quantum system prepared by the provider Eve, E, who could be maliciously correlated to it. In principle then Eve might be able to predict all the outcomes of the measurements Alice performs on the basis Z in order to extract random numbers from the system. However we will show that if Alice randomly switches from the measurement basis to a basis X mutually unbiased to Z, she can lower bound the min entropy conditioned to the side information of Eve. In this way for Alice is possible to expand a small initial random seed in a much larger amount of trusted numbers. We present the results of an experimental demonstration of the protocol where random numbers passing the most rigorous classical tests of randomness were produced. In Chapter 6, we will provide a secure generation scheme for a continuos variable (CV) QRNG. Since random true random numbers are an invaluable resource for both the classical Information Technology and the uprising Quantum one, it is clear that to sustain the present and future even growing fluxes of data to encrypt it is necessary to devise quantum random number generators able to generate numbers in the rate of Gigabit or Terabit per second. In the Literature are given several examples of QRNG protocols which in theory could reach such limits. Typically, these are based on the exploitation of the quadratures of the electro-magnetic field, regarded as an infinite bosonic quantum system. The quadratures of the field can be measured with a well known measurement scheme, the so called homodyne detection scheme which, in principle, can yield an infinite band noise. Consequently the band of the random signal is limited only by the passband of the devices used to measure it. Photodiodes detectors work commonly in the GHz band, so if one sample the signal with an ADC enough fast, the Gigabit or Terabit rates can be easily reached. However, as in the case of discrete variable QRNG, the protocols that one can find in the Literature, do not properly consider the purity of the quantum state being measured. The idea has been to extend the discrete variable protocol of the previous Chapter, to the Continuous case. We will show how in the CV framework, not only the problem of the state purity is given but also the problem related to the precision of the measurements used to extract the randomness
    corecore