58,661 research outputs found

    Robust Adaptive Congestion Control for Next Generation Networks

    Get PDF
    This paper deals with the problem of congestion control in a next-generation heterogeneous network scenario. The algorithm runs in the 'edge' routers (the routers collecting the traffic between two different networks) with the aim of avoiding congestion in both the network and the edge routers. The proposed algorithm extends congestion control algorithms based on the Smith's principle: i) the controller, by exploiting on-line estimates via probe packets, adapts to the delay and rate variations; ii) the controller assures robust stability in the presence of time-varying delays

    Active congestion control using ABCD (available bandwidth-based congestion detection).

    Get PDF
    With the growth of the Internet, the problem of congestion has attained the distinction of being a perennial problem. The Internet community has been trying several approaches for improved congestion control techniques. The end-to-end approach is considered to be the most robust one and it has served quite well until recently, when researchers started to explore the information available at the intermediate node level. This approach triggered a new field called Active Networks where intermediate nodes have a much larger role to play than that of the naive nodes. This thesis proposes an active congestion control (ACC) scheme based on Available Bandwidth-based Congestion Detection (ABCD), which regulates the traffic according to network conditions. Dynamic changes in the available bandwidth can trigger re-negotiation of flow rate. We have introduced packet size adjustment at the intermediate router in addition to rate control at sender node, scaled according to the available bandwidth, which is estimated using three packet probes. To verify the improved scheme, we have extended Ted Faber\u27s ACC work in NS-2 simulator. With this simulator we verify ACC-ABCD\u27s gains such as a marginal improvement in average TCP throughput at each endpoint, fewer packet drops and improved fairness index. Our tests on NS-2 prove that the ACC-ABCD technique yields better results as compared to TCP congestion control with or without the cross traffic. Source: Masters Abstracts International, Volume: 43-03, page: 0870. Adviser: A. K. Aggarwal. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    TCP-friendliness of rate-based congestion control protocols

    Get PDF
    The main purpose of rate-based TCP-friendly congestion control protocols is to ensure that the application's traffic shares the network in a fairly and friendly manner with the dominant TCP traffic.In this work, we compare the performance of two rate-based TCP-friendly congestion control protocols, namely the rate adaptation protocol (RAP) and TCP-friendly rate control protocol (TFRC). Our experimental results reveal that the equation-based TFRC is able to achieve throughput that is close to the throughput of a TCP connection using the same network path under the same network conditions.Also, the results demonstrate that the TFRC is friendlier and robust in most of our experiments, as compared to RAP

    Explicit congestion control algorithms for available bit rate services in asynchronous transfer mode networks

    Get PDF
    Congestion control of available bit rate (ABR) services in asynchronous transfer mode (ATM) networks has been the recent focus of the ATM Forum. The focus of this dissertation is to study the impact of queueing disciplines on ABR service congestion control, and to develop an explicit rate control algorithm. Two queueing disciplines, namely, First-In-First-Out (FIFO) and per-VC (virtual connection) queueing, are examined. Performance in terms of fairness, throughput, cell loss rate, buffer size and network utilization are benchmarked via extensive simulations. Implementation complexity analysis and trade-offs associated with each queueing implementation are addressed. Contrary to the common belief, our investigation demonstrates that per-VC queueing, which is costlier and more complex, does not necessarily provide any significant improvement over simple FIFO queueing. A new ATM switch algorithm is proposed to complement the ABR congestion control standard. The algorithm is designed to work with the rate-based congestion control framework recently recommended by the ATM Forum for ABR services. The algorithm\u27s primary merits are fast convergence, high throughput, high link utilization, and small buffer requirements. Mathematical analysis is done to show that the algorithm converges to the max-min fair allocation rates in finite time, and the convergence time is proportional to the distinct number of fair allocations and the round-trip delays in the network. At the steady state, the algorithm operates without causing any oscillations in rates. The algorithm does not require any parameter tuning, and proves to be very robust in a large ATM network. The impact of ATM switching and ATM layer congestion control on the performance of TCP/IP traffic is studied and the results are presented. The study shows that ATM layer congestion control improves the performance of TCP/IP traffic over ATM, and implementing the proposed switch algorithm drastically reduces the required switch buffer requirements. In order to validate claims, many benchmark ATM networks are simulated, and the performance of the switch is evaluated in terms of fairness, link utilization, response time, and buffer size requirements. In terms of performance and complexity, the algorithm proposed here offers many advantages over other proposed algorithms in the literature

    Unicast UDP Usage Guidelines for Application Designers

    Get PDF
    Publisher PD
    • …
    corecore