4,624 research outputs found

    STiCMAC: A MAC Protocol for Robust Space-Time Coding in Cooperative Wireless LANs

    Full text link
    Relay-assisted cooperative wireless communication has been shown to have significant performance gains over the legacy direct transmission scheme. Compared with single relay based cooperation schemes, utilizing multiple relays further improves the reliability and rate of transmissions. Distributed space-time coding (DSTC), as one of the schemes to utilize multiple relays, requires tight coordination between relays and does not perform well in a distributed environment with mobility. In this paper, a cooperative medium access control (MAC) layer protocol, called \emph{STiCMAC}, is designed to allow multiple relays to transmit at the same time in an IEEE 802.11 network. The transmission is based on a novel DSTC scheme called \emph{randomized distributed space-time coding} (\emph{R-DSTC}), which requires minimum coordination. Unlike conventional cooperation schemes that pick nodes with good links, \emph{STiCMAC} picks a \emph{transmission mode} that could most improve the end-to-end data rate. Any station that correctly receives from the source can act as a relay and participate in forwarding. The MAC protocol is implemented in a fully decentralized manner and is able to opportunistically recruit relays on the fly, thus making it \emph{robust} to channel variations and user mobility. Simulation results show that the network capacity and delay performance are greatly improved, especially in a mobile environment.Comment: This paper is a revised version of a paper with the same name submitted to IEEE Transaction on Wireless Communications. STiCMAC protocol with RTS/CTS turned off is presented in the appendix of this draf

    Experimental Evaluation of Large Scale WiFi Multicast Rate Control

    Full text link
    WiFi multicast to very large groups has gained attention as a solution for multimedia delivery in crowded areas. Yet, most recently proposed schemes do not provide performance guarantees and none have been tested at scale. To address the issue of providing high multicast throughput with performance guarantees, we present the design and experimental evaluation of the Multicast Dynamic Rate Adaptation (MuDRA) algorithm. MuDRA balances fast adaptation to channel conditions and stability, which is essential for multimedia applications. MuDRA relies on feedback from some nodes collected via a light-weight protocol and dynamically adjusts the rate adaptation response time. Our experimental evaluation of MuDRA on the ORBIT testbed with over 150 nodes shows that MuDRA outperforms other schemes and supports high throughput multicast flows to hundreds of receivers while meeting quality requirements. MuDRA can support multiple high quality video streams, where 90% of the nodes report excellent or very good video quality

    CORELA: a cooperative relaying enhanced link adaptation algorithm for IEEE 802.11 WLANs

    Get PDF

    Distributed QoS Guarantees for Realtime Traffic in Ad Hoc Networks

    Get PDF
    In this paper, we propose a new cross-layer framework, named QPART ( QoS br>rotocol for Adhoc Realtime Traffic), which provides QoS guarantees to real-time multimedia applications for wireless ad hoc networks. By adapting the contention window sizes at the MAC layer, QPART schedules packets of flows according to their unique QoS requirements. QPART implements priority-based admission control and conflict resolution to ensure that the requirements of admitted realtime flows is smaller than the network capacity. The novelty of QPART is that it is robust to mobility and variances in channel capacity and imposes no control message overhead on the network
    corecore