1,804 research outputs found

    Adaptation to Easy Data in Prediction with Limited Advice

    Full text link
    We derive an online learning algorithm with improved regret guarantees for `easy' loss sequences. We consider two types of `easiness': (a) stochastic loss sequences and (b) adversarial loss sequences with small effective range of the losses. While a number of algorithms have been proposed for exploiting small effective range in the full information setting, Gerchinovitz and Lattimore [2016] have shown the impossibility of regret scaling with the effective range of the losses in the bandit setting. We show that just one additional observation per round is sufficient to circumvent the impossibility result. The proposed Second Order Difference Adjustments (SODA) algorithm requires no prior knowledge of the effective range of the losses, ε\varepsilon, and achieves an O(εKTlnK)+O~(εKT4)O(\varepsilon \sqrt{KT \ln K}) + \tilde{O}(\varepsilon K \sqrt[4]{T}) expected regret guarantee, where TT is the time horizon and KK is the number of actions. The scaling with the effective loss range is achieved under significantly weaker assumptions than those made by Cesa-Bianchi and Shamir [2018] in an earlier attempt to circumvent the impossibility result. We also provide a regret lower bound of Ω(εTK)\Omega(\varepsilon\sqrt{T K}), which almost matches the upper bound. In addition, we show that in the stochastic setting SODA achieves an O(a:Δa>0K3ε2Δa)O\left(\sum_{a:\Delta_a>0} \frac{K^3 \varepsilon^2}{\Delta_a}\right) pseudo-regret bound that holds simultaneously with the adversarial regret guarantee. In other words, SODA is safe against an unrestricted oblivious adversary and provides improved regret guarantees for at least two different types of `easiness' simultaneously.Comment: Fixed a mistake in the proof and statement of Theorem

    Extracting Temporal Expressions from Unstructured Open Resources

    Get PDF
    AETAS is an end-to-end system with SOA approach that retrieves plain text data from web and blog news and represents and stores them in RDF, with a special focus on their temporal dimension. The system allows users to acquire, browse and query Linked Data obtained from unstructured sources

    PVT3D: Point Voxel Transformers for Place Recognition from Sparse Lidar Scans

    Full text link
    Place recognition based on point cloud (LiDAR) scans is an important module for achieving robust autonomy in robots or self-driving vehicles. Training deep networks to match such scans presents a difficult trade-off: a higher spatial resolution of the network's intermediate representations is needed to perform fine-grained matching of subtle geometric features, but growing it too large makes the memory requirements infeasible. In this work, we propose a Point-Voxel Transformer network (PVT3D) that achieves robust fine-grained matching with low memory requirements. It leverages a sparse voxel branch to extract and aggregate information at a lower resolution and a point-wise branch to obtain fine-grained local information. A novel hierarchical cross-attention transformer (HCAT) uses queries from one branch to try to match structures in the other branch, ensuring that both extract self-contained descriptors of the point cloud (rather than one branch dominating), but using both to inform the output global descriptor of the point cloud. Extensive experiments show that the proposed PVT3D method surpasses the state-of-the-art by a large amount on several datasets (Oxford RobotCar, TUM, USyd). For instance, we achieve AR@1 of 85.6% on the TUM dataset, which surpasses the strongest prior model by ~15%.Comment: 11 pages, 7 figures, 5 table
    corecore