1,174 research outputs found

    Contextual Attention for Hand Detection in the Wild

    Get PDF
    We present Hand-CNN, a novel convolutional network architecture for detecting hand masks and predicting hand orientations in unconstrained images. Hand-CNN extends MaskRCNN with a novel attention mechanism to incorporate contextual cues in the detection process. This attention mechanism can be implemented as an efficient network module that captures non-local dependencies between features. This network module can be inserted at different stages of an object detection network, and the entire detector can be trained end-to-end. We also introduce large-scale annotated hand datasets containing hands in unconstrained images for training and evaluation. We show that Hand-CNN outperforms existing methods on the newly collected datasets and the publicly available PASCAL VOC human layout dataset. Data and code: https://www3.cs.stonybrook.edu/~cvl/projects/hand_det_attention

    Contextual Attention for Hand Detection in the Wild

    Get PDF
    We present Hand-CNN, a novel convolutional network architecture for detecting hand masks and predicting hand orientations in unconstrained images. Hand-CNN extends MaskRCNN with a novel attention mechanism to incorporate contextual cues in the detection process. This attention mechanism can be implemented as an efficient network module that captures non-local dependencies between features. This network module can be inserted at different stages of an object detection network, and the entire detector can be trained end-to-end. We also introduce a large-scale annotated hand dataset containing hands in unconstrained images for training and evaluation. We show that Hand-CNN outperforms existing methods on several datasets, including our hand detection benchmark and the publicly available PASCAL VOC human layout challenge. We also conduct ablation studies on hand detection to show the effectiveness of the proposed contextual attention module.Comment: 9 pages, 9 figure

    Cascaded Segmentation-Detection Networks for Word-Level Text Spotting

    Full text link
    We introduce an algorithm for word-level text spotting that is able to accurately and reliably determine the bounding regions of individual words of text "in the wild". Our system is formed by the cascade of two convolutional neural networks. The first network is fully convolutional and is in charge of detecting areas containing text. This results in a very reliable but possibly inaccurate segmentation of the input image. The second network (inspired by the popular YOLO architecture) analyzes each segment produced in the first stage, and predicts oriented rectangular regions containing individual words. No post-processing (e.g. text line grouping) is necessary. With execution time of 450 ms for a 1000-by-560 image on a Titan X GPU, our system achieves the highest score to date among published algorithms on the ICDAR 2015 Incidental Scene Text dataset benchmark.Comment: 7 pages, 8 figure
    • …
    corecore