7,540 research outputs found

    Robust Production Plan with Periodic Order Quantity under Uncertain Cumulative Demands

    Get PDF
    International audienceIn this paper, we are interested in a production planning process in collaborative supply chains. More precisely, we consider supply chains, where actors use Manufacturing Resource Planning process (MRPII). Moreover, these actors collaborate by sharing procurement plans.We focus on a supplier, who applies the Periodic Order Quantity (POQ) rule to plan a production integrating the uncertain procurement plan sent by her/his customer. The uncertainty of the procurement plan is expressed by closed intervals on the cumulative demands. In order to choose a robust production plan, under the interval uncertainty representation, the min-max criterion is applied. We propose algorithms for determining the set of possible costs of a given production plan - due to the uncertainty on the cumulative demands.We then construct algorithms for computing a robust production plan with respect to the min-max criterion: the algorithm based on iterative adding constraints and the polynomial algorithms under certain realistic assumptions

    Optimal robust inventory management with volume flexibility: matching capacity and demand with the lookahead peak-shaving policy

    Get PDF
    We study inventory control with volume flexibility: A firm can replenish using period-dependent base capacity at regular sourcing costs and access additional supply at a premium. The optimal replenishment policy is characterized by two period-dependent base-stock levels but determining their values is not trivial, especially for nonstationary and correlated demand. We propose the Lookahead Peak-Shaving policy that anticipates and peak shaves orders from future peak-demand periods to the current period, thereby matching capacity and demand. Peak shaving anticipates future order peaks and partially shifts them forward. This contrasts with conventional smoothing, which recovers the inventory deficit resulting from demand peaks by increasing later orders. Our contribution is threefold. First, we use a novel iterative approach to prove the robust optimality of the Lookahead Peak-Shaving policy. Second, we provide explicit expressions of the period-dependent base-stock levels and analyze the amount of peak shaving. Finally, we demonstrate how our policy outperforms other heuristics in stochastic systems. Most cost savings occur when demand is nonstationary and negatively correlated, and base capacities fluctuate around the mean demand. Our insights apply to several practical settings, including production systems with overtime, sourcing from multiple capacitated suppliers, or transportation planning with a spot market. Applying our model to data from a manufacturer reduces inventory and sourcing costs by 6.7%, compared to the manufacturer's policy without peak shaving.info:eu-repo/semantics/publishedVersio

    Optimal Learning Algorithms for Stochastic Inventory Systems with Random Capacities

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156225/2/poms13178_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156225/1/poms13178.pd

    Optimal inventory policies with non-stationary supply disruptions and advance supply information

    Get PDF
    We consider the production/inventory problem of a manufacturer (or a retailer) under non-stationary and stochastic supply availability. Although supply availability is uncertain, the supplier would be able to predict her near future shortages -and hence supply disruption to (some of) her customers- based on factors such as her pipeline stock information, production schedule, seasonality, contractual obligations, and non-contractual preferences regarding other manufacturers. We consider the case where the information on the availability of supply for the near future, which we refer to as advance supply information (ASI), is provided by the supplier. The customer demand is deterministic but non-stationary over time, and the system costs consist of fixed ordering, holding and backorder costs. We consider an all-or-nothing type of supply availability structure and we show the optimality of a state-dependent (s; S) policy. For the case with no fixed ordering cost we prove various properties of the optimal order-up-to levels and provide a simple characterization of optimal order-up-to levels. For the model with fixed ordering cost, we propose a heuristic algorithm for finding a good ordering strategy. Finally, we numerically elaborate on the value of ASI and provide managerial insights

    Optimizing lot sizing model for perishable bread products using genetic algorithm

    Get PDF
    This research addresses order planning challenges related to perishable products, using bread products as a case study. The problem is how to effiยญciยญently manage the various bread products ordered by diverse customers, which requires distributors to determine the optimal number of products to order from suppliers. This study aims to formulate the problem as a lot-sizing model, considering various factors, including customer demand, inยญvenยญtory constraints, ordering capacity, return rate, and defect rate, to achieve a near or optimal solution, Therefore determining the optimal order quantity to reduce the total ordering cost becomes a challenge in this study. However, most lot sizing problems are combinatorial and difficult to solve. Thus, this study uses the Genetic Algorithm (GA) as the main method to solve the lot sizing model and determine the optimal number of bread products to order. With GA, experiments have been conducted by combining the values of population, crossover, mutation, and generation parameters to maximize the feasibility value that represents the minimal total cost. The results obtained from the application of GA demonstrate its effectiveness in generating near or optimal solutions while also showing fast computational performance. By utilizing GA, distributors can effectively minimize wastage arising from expired or perishable products while simultaneously meeting customer demand more efficiently. As such, this research makes a significant contriยญbution to the development of more effective and intelligent decision-making strategies in the domain of perishable products in bread distribution.Penelitian ini berfokus untuk mengatasi tantangan perencanaan pemesanan yang berkaitan dengan produk yang mudah rusak, dengan menggunakan produk roti sebagai studi kasus. Permasalahan yang dihadapi adalah bagaimana mengelola berbagai produk roti yang dipesan oleh pelanggan yang beragam secara efisien, yang mengharuskan distributor untuk menentukan jumlah produk yang optimal untuk dipesan dari pemasok. Untuk mencapai solusi yang optimal, penelitian ini bertujuan untuk memformulasikan masalah tersebut sebagai model lot-sizing, dengan mempertimbangkan berbagai faktor, termasuk permintaan pelanggan, kendala persediaan, kapasitas pemesanan, tingkat pengembalian, dan tingkat cacat. Oleh karena itu, menentukan jumlah pemesanan yang optimal untuk mengurangi total biaya pemesanan menjadi tantangan dalam penelitian ini. Namun, sebagian besar masalah lot sizing bersifat kombinatorial dan sulit untuk dipecahkan, oleh karena itu, penelitian ini menggunakan Genetic Algorithm (GA) sebagai metode utama untuk menyelesaikan model lot sizing dan menentukan jumlah produk roti yang optimal untuk dipesan. Dengan GA, telah dilakukan percobaan dengan mengkombinasikan nilai parameter populasi, crossover, mutasi, dan generasi untuk memaksimalkan nilai kelayakan yang merepresentasikan total biaya yang minimal. Hasil yang diperoleh dari penerapan GA menunjukkan keefektifannya dalam menghasilkan solusi yang optimal, selain itu juga menunjukkan kinerja komputasi yang cepat. Dengan menggunakan GA, distributor dapat secara efektif meminimalkan pemborosan yang timbul akibat produk yang kadaluarsa atau mudah rusak, sekaligus memenuhi permintaan pelanggan dengan lebih efisien. Dengan demikian, penelitian ini memberikan kontribusi yang signifikan terhadap pengembangan strategi pengambilan keputusan yang lebih efektif dan cerdas dalam domain produk yang mudah rusak dalam distribusi roti

    ํŒ๋งค์ด‰์ง„์„ ๋„์ž…ํ•œ ์ˆ˜์š” ๋ถˆํ™•์‹ค์„ฑ ์žฌ๊ณ ๊ด€๋ฆฌ ๋ชจํ˜•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2020. 8. ๋ฌธ์ผ๊ฒฝ.As the globalization of markets accelerates competition among companies, sales promotion, which refers to short-term incentives promoting sales of products or services, plays a prominent role. Although there are various types of sales promotions, such as price reduction, buy-x-get-y-free, and trade-in program, the common purpose is to induce the purchase of customers by offering benefits. This successful strategy has caught the attention of researchers, including operations management and supply chain management. Thus, various studies have been conducted to examine strategies for ongoing operations and to demonstrate the effects of the sales promotion, which are based on the strategic level. However, research at the tactical or operational level has been conducted insufficiently. This dissertation examines the inventory models considering (i) markdown sale, (ii) buy one get one free (BOGO), and (iii) trade-in program. First, the newsvendor model is considered. By introducing the decision variable, which represents the start time of markdown sale, the retailer can obtain the optimal combination of the start time of a markdown sale and an order quantity. Under certain conditions in a decentralized system, however, the start time of a markdown sale where the retailer obtains the highest profit is the least profitable for the manufacturer. To avoid irrational ordering behavior by a retailer against a manufacturer, a revenue-sharing contract is proposed. Second, the mobile application, ``My Own Refrigerator'', is considered in the inventory model. It enables customers to store BOGO products in their virtual storage for later use. That is, customers can drop by the store to pick up the extra freebies in the future. The promotion involves a high degree of uncertainty regarding the revisiting date because customers who buy the product do not need to take both products on the day of purchase. To deal with this uncertainty, we propose a robust multiperiod inventory model by addressing the approximation of a multistage stochastic optimization model. Third, the trade-in program is considered. It is one of the sales promotions that companies collect used old-generation products from customers and provide them with new-generation products at a discount price. It also helps to acquire the additional products which are required for the refurbishment service. A multiperiod stochastic inventory model based on the closed-loop supply chain system is proposed by incorporating the trade-in program and refurbishment service simultaneously. The stochastic optimization model is approximated to the robust counterpart, which features a deterministic second-order cone program.์‹œ์žฅ์˜ ์„ธ๊ณ„ํ™”์— ๋”ฐ๋ฅธ ๊ธฐ์—… ๊ฐ„์˜ ๊ฒฝ์Ÿ์ด ๊ฐ€์†ํ™”๋จ์— ๋”ฐ๋ผ, ๋‹จ๊ธฐ ์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ํ†ตํ•ด ๊ณ ๊ฐ์˜ ์ œํ’ˆ ๋˜๋Š” ์„œ๋น„์Šค ๊ตฌ๋งค๋ฅผ ์œ ๋„ํ•˜๋Š” ํŒ๋งค์ด‰์ง„์˜ ์—ญํ• ์ด ์ค‘์š”ํ•ด์กŒ๋‹ค. ๊ฐ€๊ฒฉ ์ธํ•˜, ํ–‰์‚ฌ์ƒํ’ˆ ์ฆ์ •, ํŠธ๋ ˆ์ด๋“œ์ธํ”„๋กœ๊ทธ๋žจ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ํŒ๋งค์ด‰์ง„ ์ „๋žต์ด ์กด์žฌํ•˜์ง€๋งŒ, ๊ณตํ†ต๋œ ์ฃผ์š” ๋ชฉ์ ์€ ๊ธฐ์—…์ด ๊ณ ๊ฐ์—๊ฒŒ ํ˜œํƒ์„ ์ œ๊ณตํ•˜์—ฌ ๊ณ ๊ฐ์˜ ์ˆ˜์š”๋ฅผ ์ฆ๋Œ€์‹œํ‚ค๋Š” ๊ฒƒ์ด๋‹ค. ํŒ๋งค์ด‰์ง„์˜ ์„ฑ๊ณต์ ์ธ ์ „๋žต์€ ๊ฒฝ์˜๊ณผํ•™ ๋˜๋Š” ๊ณต๊ธ‰๋ง๊ด€๋ฆฌ ๋ถ„์•ผ๋ฅผ ํฌํ•จํ•œ ๊ด€๋ จ ํ•™๊ณ„์˜ ๊ด€์‹ฌ์„ ์ด๋Œ์—ˆ๋‹ค. ์ง€์†์ ์ธ ์šด์˜์„ ์œ„ํ•œ ์ „๋žต์„ ๊ฒ€ํ† ํ•˜๊ณ  ์ „๋žต์  ์ˆ˜์ค€ ๊ณ„ํš์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ํŒ๋งค ์ด‰์ง„์˜ ํšจ๊ณผ๋ฅผ ์ž…์ฆํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์šด์˜ ์ˆ˜์ค€์˜ ์†Œ๋งค์—…์ฒด ์ž…์žฅ์—์„œ์˜ ์—ฐ๊ตฌ๋Š” ๋ฏธํกํ•œ ์‹ค์ •์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” (i) ๋งˆํฌ ๋‹ค์šด (ii) buy one get one free (BOGO), ๋ฐ (iii) ํŠธ๋ ˆ์ด๋“œ์ธํ”„๋กœ๊ทธ๋žจ์„ ๊ณ ๋ คํ•œ ์žฌ๊ณ ๊ด€๋ฆฌ๋ชจํ˜•์„ ๋‹ค๋ฃฌ๋‹ค. ๋จผ์ €, ์‹ ๋ฌธ๊ฐ€ํŒ์› ๋ชจํ˜•์— ๋งˆํฌ ๋‹ค์šด ์‹œ์ž‘ ์‹œ์ ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒฐ์ • ๋ณ€์ˆ˜๋ฅผ ๋„์ž…ํ•˜์—ฌ ์ตœ์ ์˜ ๋งˆํฌ ๋‹ค์šด ์‹œ์ž‘ ์‹œ์ ๊ณผ ์ฃผ๋ฌธ๋Ÿ‰์˜ ์กฐํ•ฉ์„ ์ œ๊ณตํ•˜๋Š” ๋ชจํ˜•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ถ„์‚ฐ ์‹œ์Šคํ…œ์˜ ํŠน์ • ์กฐ๊ฑด์—์„œ๋Š” ์†Œ๋งค์—…์ž๊ฐ€ ๊ฐ€์žฅ ๋†’์€ ์ด์ต์„ ์–ป๋Š” ์‹œ์ ์ด ์ œ์กฐ์—…์ž์—๊ฒŒ ๋‚ฎ์€ ์ˆ˜์ต์„ฑ์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ์ œ์กฐ์—…์ž์— ๋Œ€ํ•œ ์†Œ๋งค์—…์ž์˜ ๋น„ํ•ฉ๋ฆฌ์  ์ฃผ๋ฌธ์„ ๋ง‰๊ธฐ ์œ„ํ•œ ์ด์ต๋ถ„๋ฐฐ๊ณ„์•ฝ์„ ์ œ์•ˆํ•œ๋‹ค. ์ด์ต๋ถ„๋ฐฐ๊ณ„์•ฝ์„ ํ†ตํ•œ ์ค‘์•™์ง‘๊ถŒํ™” ์‹œ์Šคํ…œ์€ ๋ถ„์‚ฐ ์‹œ์Šคํ…œ์—์„œ ์–ป์€ ์ด์ต์— ๋น„ํ•ด ์†Œ๋งค์—…์ž์™€ ์ œ์กฐ์—…์ž์˜ ์ด์ต์„ ํ–ฅ์ƒ์‹œํ‚ด์„ ์ˆ˜์น˜์‹คํ—˜์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ๋‘˜์งธ, ๋ชจ๋ฐ”์ผ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ``๋‚˜๋งŒ์˜ ๋ƒ‰์žฅ๊ณ ''๋ฅผ ๊ณ ๋ คํ•œ ์žฌ๊ณ ๋ชจํ˜•์„ ๊ณ ๋ คํ•œ๋‹ค. ์ด ์•ฑ์„ ํ†ตํ•ด BOGO ํ–‰์‚ฌ์ œํ’ˆ์„ ๊ตฌ๋งคํ•œ ๊ณ ๊ฐ์€ ์ฆ์ •ํ’ˆ์„ ๊ตฌ๋งค ๋‹น์ผ ๋‚  ๊ฐ€์ ธ๊ฐ€์ง€ ์•Š๊ณ  ๋ฏธ๋ž˜์— ์žฌ๋ฐฉ๋ฌธํ•˜์—ฌ ์ˆ˜๋ นํ•  ์ˆ˜ ์žˆ๋Š” ํ˜œํƒ์„ ๋ฐ›๋Š”๋‹ค. ํ•˜์ง€๋งŒ ์†Œ๋งค์—…์ž ์ž…์žฅ์—์„œ๋Š” ๊ณ ๊ฐ์ด ์ฆ์ •ํ’ˆ์„ ์–ธ์ œ ์ˆ˜๋ นํ•ด ๊ฐˆ ์ง€์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์ด ์กด์žฌํ•˜๋ฉฐ ์ด๋Š” ๊ธฐ์กด์˜ ์žฌ๊ณ ๊ด€๋ฆฌ ์šด์˜๋ฐฉ์‹์—๋Š” ํ•œ๊ณ„์ ์ด ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ ๊ฐ์˜ ์žฌ๋ฐฉ๋ฌธ์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•œ ๋ณต์ˆ˜๊ธฐ๊ฐ„ ์ถ”๊ณ„๊ณ„ํš ์žฌ๊ณ ๋ชจํ˜•์„ ์ˆ˜๋ฆฝํ•˜๋ฉฐ ์ด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•œ ๊ฐ•๊ฑด์ตœ์ ํ™” ๋ชจํ˜•์œผ๋กœ ๊ทผ์‚ฌํ™”ํ•˜์˜€๋‹ค. ์…‹์งธ, ๋ฆฌํผ์„œ๋น„์Šค์™€ ํŠธ๋ ˆ์ด๋“œ์ธํ”„๋กœ๊ทธ๋žจ์„ ๊ณ ๋ คํ•œ ํํšŒ๋กœ ๊ณต๊ธ‰๋ง ์‹œ์Šคํ…œ ๊ธฐ๋ฐ˜์˜ ๋ณต์ˆ˜๊ธฐ๊ฐ„ ์žฌ๊ณ ๊ด€๋ฆฌ๋ชจํ˜•์„ ์ œ์•ˆํ•œ๋‹ค. ์‹ ์„ธ๋Œ€ ์ œํ’ˆ, ๋ฆฌํผ์„œ๋น„์Šค ๋ฐ ํŠธ๋ ˆ์ด๋“œ์ธํ”„๋กœ๊ทธ๋žจ์— ๋Œ€ํ•œ ์„ธ ๊ฐ€์ง€ ์œ ํ˜•์˜ ๋ถˆํ™•์‹คํ•œ ์ˆ˜์š”์— ๋Œ€ํ•œ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ฐ˜์˜ํ•จ์— ๋”ฐ๋ผ ๋ณต์ˆ˜๊ธฐ๊ฐ„ ์ถ”๊ณ„๊ณ„ํš ์žฌ๊ณ ๋ชจํ˜•์ด ์ˆ˜๋ฆฝ๋œ๋‹ค. ๋ณต์ˆ˜๊ธฐ๊ฐ„ ์ถ”๊ณ„๊ณ„ํš ์žฌ๊ณ ๋ชจํ˜•์˜ ๊ณ„์‚ฐ์ด ์–ด๋ ต๋‹ค๋Š” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ๊ฐ•๊ฑด์ตœ์ ํ™” ๋ชจํ˜•์œผ๋กœ ๊ทผ์‚ฌํ™”ํ•˜์˜€๋‹ค.Chapter 1 Introduction 1 1.1 Sales promotion 1 1.2 Inventory management 3 1.3 Research motivations 6 1.4 Research contents and contributions 8 1.5 Outline of the dissertation 10 Chapter 2 Optimal Start Time of a Markdown Sale Under a Two-Echelon Inventory System 11 2.1 Introduction and literature review 11 2.2 Problem description 17 2.3 Analysis of the decentralized system 21 2.3.1 Newsvendor model for a retailer 21 2.3.2 Solution procedure for an optimal combination of the start time of the markdown sale and the order quantity 25 2.3.3 Profi t function of a manufacturer 25 2.3.4 Numerical experiments of the decentralized system 27 2.4 Analysis of a centralized system 35 2.4.1 Revenue-sharing contract 35 2.4.2 Numerical experiments of the centralized system 38 2.5 Summary 40 2.5.1 Managerial insights 41 Chapter 3 Robust Multiperiod Inventory Model with a New Type of Buy One Get One Promotion: "My Own Refrigerator" 43 3.1 Introduction and literature review 43 3.2 Problem description 51 3.2.1 Demand modeling 52 3.2.2 Sequences of the ordering decision 54 3.3 Mathematical formulation of the IMMOR 56 3.3.1 Mathematical formulation of the IMMOR under the deterministic demand 58 3.3.2 Mathematical formulation of the IMMOR under the stochastic demand 58 3.3.3 Distributionally robust optimization approach for the IMMOR 60 3.4 Computational experiments 76 3.4.1 Experiment 1: tractability of the RIMMOR 77 3.4.2 Experiment 2: robustness of the RIMMOR 78 3.4.3 Experiment 3: e ect of duration of the expiry date under the different customers' revisiting propensities 78 3.5 Summary 83 3.5.1 Managerial insights 83 Chapter 4 Robust Multiperiod Inventory Model Considering Refurbishment Service and Trade-in Program 85 4.1 Introduction 85 4.2 Literature review 91 4.2.1 Effects of the trade-in program and strategic-level decisions for the trade-in program 91 4.2.2 Inventory or lot-sizing model in a closed-loop supply chain system 94 4.2.3 Distinctive features of this research 97 4.3 Problem description 100 4.3.1 Demand modeling 103 4.3.2 Decision of the inventory manager 105 4.4 Mathematical formulation 108 4.4.1 Mathematical formulation of the IMRSTIP under the deterministic demand model 108 4.4.2 Mathematical formulation of the IMRSTIP under the stochastic demand model 110 4.4.3 Distributionally robust optimization approach for the IMRSTIP 111 4.5 Computational experiments 125 4.5.1 Demand process 125 4.5.2 Experiment 1: tractability of the RIMRSTIP 128 4.5.3 Experiment 2: approximation error from the expected value given perfect information 129 4.5.4 Experiment 3: protection against realized uncertain factors 130 4.5.5 Experiment 4: di erences between modeling demands from VARMA and ARMA 131 4.5.6 Experiments 5 and 6: comparisons of backlogged refurbishment service with or without trade-in program 133 4.6 Summary 136 Chapter 5 Conclusions 138 5.1 Summary 138 5.2 Future research 140 Bibliography 142 Chapter A 160 A.1 160 A.2 163 A.3 163 A.4 164 A.5 165 A.6 166 Chapter B 168 B.1 168 B.2 171 B.3 172 Chapter C 174 C.1 174 C.2 174 ๊ตญ๋ฌธ์ดˆ๋ก 179Docto
    • โ€ฆ
    corecore