4,921 research outputs found

    Distributed stochastic optimization via matrix exponential learning

    Get PDF
    In this paper, we investigate a distributed learning scheme for a broad class of stochastic optimization problems and games that arise in signal processing and wireless communications. The proposed algorithm relies on the method of matrix exponential learning (MXL) and only requires locally computable gradient observations that are possibly imperfect and/or obsolete. To analyze it, we introduce the notion of a stable Nash equilibrium and we show that the algorithm is globally convergent to such equilibria - or locally convergent when an equilibrium is only locally stable. We also derive an explicit linear bound for the algorithm's convergence speed, which remains valid under measurement errors and uncertainty of arbitrarily high variance. To validate our theoretical analysis, we test the algorithm in realistic multi-carrier/multiple-antenna wireless scenarios where several users seek to maximize their energy efficiency. Our results show that learning allows users to attain a net increase between 100% and 500% in energy efficiency, even under very high uncertainty.Comment: 31 pages, 3 figure

    A Hierarchical Spectrum Access Scheme for TV White Space Coexistence in Hetergeneous Networks

    Get PDF
    Among current techniques for dynamic access to television (TV) white space (TVWS), geolocation database-based access provides a promising performance in protecting the TV-band incumbents from interference that cannot be efficiently achieved in other license-exempt models. However, in heterogeneous wireless networks, most portable devices do not have such access and may cause interference to TV incumbents. We propose a hierarchical model for spectrum sharing in TVWS that includes a wide range of fixed and portable devices. In the first tier, the TV broadcaster can lease the spectrum bands to local fixed users based on a soft license agreement. The fixed users are allowed to share access to this spectrum with some mobile users in their proximity in exchange for cooperative relaying. We consider a practical scenario, where only partial channel state information (CSI) is available at the users\u27 transmitters, and we propose a robust algorithm against such uncertainties in CSI values. We also propose a reputation-based relay selection mechanism to identify selfish portable users. The proposed spectrum sharing framework can provide a practical model for TVWS-coexistence that prevents undesired interference to the incumbents while restricting interference among the unlicensed devices. The simulation results show the enhancement of fixed users\u27 rate compared with alternative relay selection methods
    • …
    corecore