1,743 research outputs found

    Impact of government policies on Sustainable Petroleum Supply Chain (SPSC): A case study – Part I (Models)

    Get PDF
    Environmental concerns and energy security have led governments to establish legislations to convertConventional Petroleum Supply Chain (CPSC) to Sustainable Petroleum Supply Chain (SPSC). The United States(US), one of the biggest oil consumers in the world, has created regulations to manage ethanol production and con-sumption for the last half century. Though these regulations have created new opportunities, they have also added newburdens to the obligated parties. It is thus key for the government, the obligated parties, and related businesses to studythe impact of the policies on the SPSC. We develop a two-stage stochastic programming model, General Model (GM),which incorporates Renewable Fuel Standard 2 (RFS2), Tax Credits, Tariffs, and Blend Wall (BW) to study the policyimpact on the SPSC using cellulosic ethanol. The model, as any other general model available in the literature, makesit highly impractical to study the policy impact due to the model’s computational complexity. We use the GM to derivea Lean Model (LM) to study the impact by running computational experiments more efficiently and consequently byarriving at robust managerial insights much faster. We present a case study of the policy impact on the SPSC in theState of Nebraska using the LM in the accompanying part II (Ghahremanlou and Kubiak 2020)

    Petroleum refinery scheduling with consideration for uncertainty

    Get PDF
    Scheduling refinery operation promises a big cut in logistics cost, maximizes efficiency, organizes allocation of material and resources, and ensures that production meets targets set by planning team. Obtaining accurate and reliable schedules for execution in refinery plants under different scenarios has been a serious challenge. This research was undertaken with the aim to develop robust methodologies and solution procedures to address refinery scheduling problems with uncertainties in process parameters. The research goal was achieved by first developing a methodology for short-term crude oil unloading and transfer, as an extension to a scheduling model reported by Lee et al. (1996). The extended model considers real life technical issues not captured in the original model and has shown to be more reliable through case studies. Uncertainties due to disruptive events and low inventory at the end of scheduling horizon were addressed. With the extended model, crude oil scheduling problem was formulated under receding horizon control framework to address demand uncertainty. This work proposed a strategy called fixed end horizon whose efficiency in terms of performance was investigated and found out to be better in comparison with an existing approach. In the main refinery production area, a novel scheduling model was developed. A large scale refinery problem was used as a case study to test the model with scheduling horizon discretized into a number of time periods of variable length. An equivalent formulation with equal interval lengths was also presented and compared with the variable length formulation. The results obtained clearly show the advantage of using variable timing. A methodology under self-optimizing control (SOC) framework was then developed to address uncertainty in problems involving mixed integer formulation. Through case study and scenarios, the approach has proven to be efficient in dealing with uncertainty in crude oil composition

    Managing M&A-From Strategic Intent to Integration: IOCs Acquisition of IBP and After

    Get PDF
    <div align=justify>This paper, in the nature of a case study, discusses the entire range of managerial issues addressed by Indian Oil Corporation Limited (IOC) in the acquisition, subsequent merger and post-merger integration of IBP Co. Limited (IBP) following IBP's disinvestment by the Government of India. The three stages of IBP transactions spanned a 5-6 year period from 2002 to 2007. The paper discusses from IOC's perspective, the strategic case for the IBP acquisition, rationale for what turned out to be an extremely aggressive bid price for IBP, the raison for subsequent merger, and the critical choices made by IOC management in post-merger integration of IBP. The paper also examines the controversies the IBP transactions generated in their wake and the corporate governance issues involved. We conclude that IOC appears to have handled the entire value chain of activities in the IBP transactions from acquisition planning and strategic evaluation through deal execution, post-acquisition merger, and to post-merger integration with a high level of professionalism, a balanced sense of priorities and a high degree of sensitivity, rarely seen in the Indian public sector milieu. We also believe that as Indian companies, particularly the larger state-owned enterprises, find themselves in the inevitable need to pursue M&A-based growth strategies, IOC's IBP experience should provide useful guidance in their endeavours. </div>

    Strategic and Tactical Crude Oil Supply Chain: Mathematical Programming Models

    Get PDF
    Crude oil industry very fast became a strategic industry. Then, optimization of the Crude Oil Supply Chain (COSC) models has created new challenges. This fact motivated me to study the COSC mathematical programming models. We start with a systematic literature review to identify promising avenues. Afterwards, we elaborate three concert models to fill identified gaps in the COSC context, which are (i) joint venture formation, (ii) integrated upstream, and (iii) environmentally conscious design

    Petroleum Refining and Petrochemical Industry Integration and Coordination under Uncertainty

    Get PDF
    Petroleum refining and the petrochemical industry account for a major share in the world energy and industrial market. In many situations, they represent the economy back-bone of industrial countries. Today, the volatile environment of the market and the continuous change in customer requirements lead to constant pressure to seek opportunities that properly align and coordinate the different components of the industry. In particular, petroleum refining and petrochemical industry coordination and integration is gaining a great deal of interest. However, previous research in the field either studied the two systems in isolation or assumed limited interactions between them. The aim of this thesis is to provide a framework for the planning, integration and coordination of multisite refinery and petrochemical networks using proper deterministic, stochastic and robust optimization techniques. The contributions of this dissertation fall into three categories; namely, a) Multisite refinery planning, b) Petrochemical industry planning, and c) Integration and coordination of multisite refinery and petrochemical networks. The first part of this thesis tackles the integration and coordination of a multisite refinery network. We first address the design and analysis of multisite integration and coordination strategies within a network of petroleum refineries through a mixed-integer linear programming (MILP) technique. The integrated network design specifically addresses intermediate material transfer between processing units at each site. The proposed model is then extended to account for model uncertainty by means of two-stage stochastic programming. Parameter uncertainty was considered and included coefficients of the objective function and right-hand-side parameters in the inequality constraints. Robustness is analyzed based on both model robustness and solution robustness, where each measure is assigned a scaling factor to analyze the sensitivity of the refinery plan and the integration network due to variations. The proposed technique makes use of the sample average approximation (SAA) method with statistical bounding techniques to give an insight on the sample size required to give adequate approximation of the problem. The second part of the thesis addresses the strategic planning, design and optimization of a network of petrochemical processes. We first set up and give an overview of the deterministic version of the petrochemical industry planning model adopted in this thesis. Then we extend the model to address the strategic planning, design and optimization of a network of petrochemical processes under uncertainty and robust considerations. Similar to the previous part, robustness is analyzed based on both model robustness and solution robustness. Parameter uncertainty considered in this part includes process yield, raw material and product prices, and lower product market demand. The Expected Value of Perfect Information (EVPI) and Value of the Stochastic Solution (VSS) are also investigated to numerically illustrate the value of including the randomness of the different model parameters. The final part of this dissertation addresses the integration between the multisite refinery system and the petrochemical industry. We first develop a framework for the design and analysis of possible integration and coordination strategies of multisite refinery and petrochemical networks to satisfy given petroleum and chemical product demand. The main feature of the work is the development of a methodology for the simultaneous analysis of process network integration within a multisite refinery and petrochemical system. Then we extend the petroleum refinery and petrochemical industry integration problem to consider different sources of uncertainties in model parameters. Parameter uncertainty considered includes imported crude oil price, refinery product price, petrochemical product price, refinery market demand, and petrochemical lower level product demand. We apply the sample average approximation (SAA) method within an iterative scheme to generate the required scenarios and provide solution quality by measuring the optimality gap of the final solution

    Discourse and sociotechnical transformation: the emergence of refinery information systems

    Get PDF
    This thesis considers the emergence and diffusion of British Petroleum's (BP) Refinery Information Systems (RIS). Insights from the associology of translation are coupled with the Foucauldian concepts of discourse and power /knowledge in order to analyse accounts of the system provided by organisational participants. The analysis suggests that a new form of managerialism, or "new commercial agenda" is being selectively deployed both within BP and within the wider commercial world. This transformed managerialism seeks to maintain control and heighten commercialism through a re- working of hierarchical relations within the organisation. Artefacts and practices of organisational life are revealed as prime vehicles for instantiating this new agenda and BP's Refinery Information Systems are thus seen to be both a condition and a consequence of the changes underway

    Scheduling of crude oil and product blending and distribution operations in a refinery

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Cascading Effects of Fuel Network Interdiction

    Get PDF
    This thesis develops the Fuel Interdiction and Resulting Cascading Effects (FI&RCE) model. The study details the development and experimental testing of a framework for assessing the interdiction of a refined petroleum production and distribution network. FI&RCE uses a maximum flow mathematical programming formulation that models the transit of fuels from points of importation and refinement through a polyduct distribution network for delivery across a range of end user locations. The automated model accommodates networks of varying size and complexity. FI&RCE allows for parameters and factor settings that enable robust experimentation through implementation in MATLAB 2014 and the commercial solver CPLEX (Version 12.5). Experimental design allows the investigation of interdiction or disruption on supply and network infrastructure locations in order to support the strategic analytical needs of the user. Given a target set, FI&RCE provides measured responses for the resulting fuel availability and a valuation of economic loss. The value of economic loss feeds a Leontief based input-output model that assesses the cascading effects in the studied economy by implementing a mathematical program that optimizes the remaining industrial outputs. FI&RCE demonstrates a framework to investigate the military and cascading effects of a fuel interdiction campaign plan using a realistic case study

    Optimization of crude oil operations scheduling by applying a two-stage stochastic programming approach with risk management

    Get PDF
    Producción CientíficaThis paper focuses on the problem of crude oil operations scheduling carried out in a system composed of a refinery and a marine terminal, considering uncertainty in the arrival date of the ships that supply the crudes. To tackle this problem, we develop a two-stage stochastic mixed-integer nonlinear programming (MINLP) model based on continuous-time representation. Furthermore, we extend the proposed model to include risk management by considering the Conditional Value-at-Risk (CVaR) measure as the objective function, and we analyze the solutions obtained for different risk levels. Finally, to evaluate the solution obtained, we calculate the Expected Value of Perfect Information (EVPI) and the Value of the Stochastic Solution (VSS) to assess whether two-stage stochastic programming model offers any advantage over simpler deterministic approaches.Gobierno de España - proyects a-CIDiT (PID2021-123654OB-C31) and InCo4In (PGC 2018-099312-B-C31)Junta de Castilla y León - EU-FEDER (CLU 2017-09, CL-EI-2021-07, UIC 233

    The Southern California Green Hydrogen Cluster

    Get PDF
    A growing Southern California green hydrogen market would support California's efforts to leverage federal investment from the Infrastructure, Investment, and Jobs Act to establish an equitable, sustainable, and expanding renewable hydrogen hub.As Southern California organizations continue to work with GO-Biz and the rest of the Governor's Administration as it leads public and private stakeholders toward the goal of submitting a single, state-sponsored application encompassing projects throughout California to the U.S. Department of Energy's "Regional Clean Hydrogen Hubs" funding program.Due to the relative maturity of hydrogen technology and demand, a Southern California market will initially include green hydrogen production, storage, and transport, with initial end use applications focused on industry, transportation, and ports
    corecore