54 research outputs found

    Multinomial logistic regression probability ratio-based feature vectors for Malay vowel recognition

    Get PDF
    Vowel Recognition is a part of automatic speech recognition (ASR) systems that classifies speech signals into groups of vowels. The performance of Malay vowel recognition (MVR) like any multiclass classification problem depends largely on Feature Vectors (FVs). FVs such as Mel-frequency Cepstral Coefficients (MFCC) have produced high error rates due to poor phoneme information. Classifier transformed probabilistic features have proved a better alternative in conveying phoneme information. However, the high dimensionality of the probabilistic features introduces additional complexity that deteriorates ASR performance. This study aims to improve MVR performance by proposing an algorithm that transforms MFCC FVs into a new set of features using Multinomial Logistic Regression (MLR) to reduce the dimensionality of the probabilistic features. This study was carried out in four phases which are pre-processing and feature extraction, best regression coefficients generation, feature transformation, and performance evaluation. The speech corpus consists of 1953 samples of five Malay vowels of /a/, /e/, /i/, /o/ and /u/ recorded from students of two public universities in Malaysia. Two sets of algorithms were developed which are DBRCs and FELT. DBRCs algorithm determines the best regression coefficients (DBRCs) to obtain the best set of regression coefficients (RCs) from the extracted 39-MFCC FVs through resampling and data swapping approach. FELT algorithm transforms 39-MFCC FVs using logistic transformation method into FELT FVs. Vowel recognition rates of FELT and 39-MFCC FVs were compared using four different classification techniques of Artificial Neural Network, MLR, Linear Discriminant Analysis, and k-Nearest Neighbour. Classification results showed that FELT FVs surpass the performance of 39-MFCC FVs in MVR. Depending on the classifiers used, the improved performance of 1.48% - 11.70% was attained by FELT over MFCC. Furthermore, FELT significantly improved the recognition accuracy of vowels /o/ and /u/ by 5.13% and 8.04% respectively. This study contributes two algorithms for determining the best set of RCs and generating FELT FVs from MFCC. The FELT FVs eliminate the need for dimensionality reduction with comparable performances. Furthermore, FELT FVs improved MVR for all the five vowels especially /o/ and /u/. The improved MVR performance will spur the development of Malay speech-based systems, especially for the Malaysian community

    Multimodal Data Analysis of Dyadic Interactions for an Automated Feedback System Supporting Parent Implementation of Pivotal Response Treatment

    Get PDF
    abstract: Parents fulfill a pivotal role in early childhood development of social and communication skills. In children with autism, the development of these skills can be delayed. Applied behavioral analysis (ABA) techniques have been created to aid in skill acquisition. Among these, pivotal response treatment (PRT) has been empirically shown to foster improvements. Research into PRT implementation has also shown that parents can be trained to be effective interventionists for their children. The current difficulty in PRT training is how to disseminate training to parents who need it, and how to support and motivate practitioners after training. Evaluation of the parents’ fidelity to implementation is often undertaken using video probes that depict the dyadic interaction occurring between the parent and the child during PRT sessions. These videos are time consuming for clinicians to process, and often result in only minimal feedback for the parents. Current trends in technology could be utilized to alleviate the manual cost of extracting data from the videos, affording greater opportunities for providing clinician created feedback as well as automated assessments. The naturalistic context of the video probes along with the dependence on ubiquitous recording devices creates a difficult scenario for classification tasks. The domain of the PRT video probes can be expected to have high levels of both aleatory and epistemic uncertainty. Addressing these challenges requires examination of the multimodal data along with implementation and evaluation of classification algorithms. This is explored through the use of a new dataset of PRT videos. The relationship between the parent and the clinician is important. The clinician can provide support and help build self-efficacy in addition to providing knowledge and modeling of treatment procedures. Facilitating this relationship along with automated feedback not only provides the opportunity to present expert feedback to the parent, but also allows the clinician to aid in personalizing the classification models. By utilizing a human-in-the-loop framework, clinicians can aid in addressing the uncertainty in the classification models by providing additional labeled samples. This will allow the system to improve classification and provides a person-centered approach to extracting multimodal data from PRT video probes.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Image processing methods to segment speech spectrograms for word level recognition

    Get PDF
    The ultimate goal of automatic speech recognition (ASR) research is to allow a computer to recognize speech in real-time, with full accuracy, independent of vocabulary size, noise, speaker characteristics or accent. Today, systems are trained to learn an individual speaker's voice and larger vocabularies statistically, but accuracy is not ideal. A small gap between actual speech and acoustic speech representation in the statistical mapping causes a failure to produce a match of the acoustic speech signals by Hidden Markov Model (HMM) methods and consequently leads to classification errors. Certainly, these errors in the low level recognition stage of ASR produce unavoidable errors at the higher levels. Therefore, it seems that ASR additional research ideas to be incorporated within current speech recognition systems. This study seeks new perspective on speech recognition. It incorporates a new approach for speech recognition, supporting it with wider previous research, validating it with a lexicon of 533 words and integrating it with a current speech recognition method to overcome the existing limitations. The study focusses on applying image processing to speech spectrogram images (SSI). We, thus develop a new writing system, which we call the Speech-Image Recogniser Code (SIR-CODE). The SIR-CODE refers to the transposition of the speech signal to an artificial domain (the SSI) that allows the classification of the speech signal into segments. The SIR-CODE allows the matching of all speech features (formants, power spectrum, duration, cues of articulation places, etc.) in one process. This was made possible by adding a Realization Layer (RL) on top of the traditional speech recognition layer (based on HMM) to check all sequential phones of a word in single step matching process. The study shows that the method gives better recognition results than HMMs alone, leading to accurate and reliable ASR in noisy environments. Therefore, the addition of the RL for SSI matching is a highly promising solution to compensate for the failure of HMMs in low level recognition. In addition, the same concept of employing SSIs can be used for whole sentences to reduce classification errors in HMM based high level recognition. The SIR-CODE bridges the gap between theory and practice of phoneme recognition by matching the SSI patterns at the word level. Thus, it can be adapted for dynamic time warping on the SIR-CODE segments, which can help to achieve ASR, based on SSI matching alone

    Getting Past the Language Gap: Innovations in Machine Translation

    Get PDF
    In this chapter, we will be reviewing state of the art machine translation systems, and will discuss innovative methods for machine translation, highlighting the most promising techniques and applications. Machine translation (MT) has benefited from a revitalization in the last 10 years or so, after a period of relatively slow activity. In 2005 the field received a jumpstart when a powerful complete experimental package for building MT systems from scratch became freely available as a result of the unified efforts of the MOSES international consortium. Around the same time, hierarchical methods had been introduced by Chinese researchers, which allowed the introduction and use of syntactic information in translation modeling. Furthermore, the advances in the related field of computational linguistics, making off-the-shelf taggers and parsers readily available, helped give MT an additional boost. Yet there is still more progress to be made. For example, MT will be enhanced greatly when both syntax and semantics are on board: this still presents a major challenge though many advanced research groups are currently pursuing ways to meet this challenge head-on. The next generation of MT will consist of a collection of hybrid systems. It also augurs well for the mobile environment, as we look forward to more advanced and improved technologies that enable the working of Speech-To-Speech machine translation on hand-held devices, i.e. speech recognition and speech synthesis. We review all of these developments and point out in the final section some of the most promising research avenues for the future of MT

    Introduction to Psycholiguistics

    Get PDF

    Getting Past the Language Gap: Innovations in Machine Translation

    Get PDF
    In this chapter, we will be reviewing state of the art machine translation systems, and will discuss innovative methods for machine translation, highlighting the most promising techniques and applications. Machine translation (MT) has benefited from a revitalization in the last 10 years or so, after a period of relatively slow activity. In 2005 the field received a jumpstart when a powerful complete experimental package for building MT systems from scratch became freely available as a result of the unified efforts of the MOSES international consortium. Around the same time, hierarchical methods had been introduced by Chinese researchers, which allowed the introduction and use of syntactic information in translation modeling. Furthermore, the advances in the related field of computational linguistics, making off-the-shelf taggers and parsers readily available, helped give MT an additional boost. Yet there is still more progress to be made. For example, MT will be enhanced greatly when both syntax and semantics are on board: this still presents a major challenge though many advanced research groups are currently pursuing ways to meet this challenge head-on. The next generation of MT will consist of a collection of hybrid systems. It also augurs well for the mobile environment, as we look forward to more advanced and improved technologies that enable the working of Speech-To-Speech machine translation on hand-held devices, i.e. speech recognition and speech synthesis. We review all of these developments and point out in the final section some of the most promising research avenues for the future of MT

    15th SC@RUG 2018 proceedings 2017-2018

    Get PDF
    • …
    corecore