74 research outputs found

    IONet: Learning to Cure the Curse of Drift in Inertial Odometry

    Full text link
    Inertial sensors play a pivotal role in indoor localization, which in turn lays the foundation for pervasive personal applications. However, low-cost inertial sensors, as commonly found in smartphones, are plagued by bias and noise, which leads to unbounded growth in error when accelerations are double integrated to obtain displacement. Small errors in state estimation propagate to make odometry virtually unusable in a matter of seconds. We propose to break the cycle of continuous integration, and instead segment inertial data into independent windows. The challenge becomes estimating the latent states of each window, such as velocity and orientation, as these are not directly observable from sensor data. We demonstrate how to formulate this as an optimization problem, and show how deep recurrent neural networks can yield highly accurate trajectories, outperforming state-of-the-art shallow techniques, on a wide range of tests and attachments. In particular, we demonstrate that IONet can generalize to estimate odometry for non-periodic motion, such as a shopping trolley or baby-stroller, an extremely challenging task for existing techniques.Comment: To appear in AAAI18 (Oral

    Smartphone-Based Activity Recognition in a Pedestrian Navigation Context

    Get PDF
    In smartphone-based pedestrian navigation systems, detailed knowledge about user activity and device placement is a key information. Landmarks such as staircases or elevators can help the system in determining the user position when located inside buildings, and navigation instructions can be adapted to the current context in order to provide more meaningful assistance. Typically, most human activity recognition (HAR) approaches distinguish between general activities such as walking, standing or sitting. In this work, we investigate more specific activities that are tailored towards the use-case of pedestrian navigation, including different kinds of stationary and locomotion behavior. We first collect a dataset of 28 combinations of device placements and activities, in total consisting of over 6 h of data from three sensors. We then use LSTM-based machine learning (ML) methods to successfully train hierarchical classifiers that can distinguish between these placements and activities. Test results show that the accuracy of device placement classification (97.2%) is on par with a state-of-the-art benchmark in this dataset while being less resource-intensive on mobile devices. Activity recognition performance highly depends on the classification task and ranges from 62.6% to 98.7%, once again performing close to the benchmark. Finally, we demonstrate in a case study how to apply the hierarchical classifiers to experimental and naturalistic datasets in order to analyze activity patterns during the course of a typical navigation session and to investigate the correlation between user activity and device placement, thereby gaining insights into real-world navigation behavior

    Indoor positioning of shoppers using a network of bluetooth low energy beacons

    Get PDF
    In this paper we present our work on the indoor positioning of users (shoppers), using a network of Bluetooth Low Energy (BLE) beacons deployed in a large wholesale shopping store. Our objective is to accurately determine which product sections a user is adjacent to while traversing the store, using RSSI readings from multiple beacons, measured asynchronously on a standard commercial mobile device. We further wish to leverage the store layout (which imposes natural constraints on the movement of users) and the physical configuration of the beacon network, to produce a robust and efficient solution. We start by describing our application context and hardware configuration, and proceed to introduce our node-graph model of user location. We then describe our experimental work which begins with an investigation of signal characteristics along and across aisles. We propose three methods of localization, using a โ€œnearest-beaconโ€ approach as a base-line; exponentially averaged weighted range estimates; and a particle-filter method based on the RSSI attenuation model and Gaussian-noise. Our results demonstrate that the particle filter method significantly out-performs the others. Scalability also makes this method ideal for applications run on mobile devices with more limited computational capabilitie

    Sensor Fused Indoor Positioning Using Dual Band WiFi Signal Measurements

    Get PDF
    A ubiquitous and accurate positioning system for mobile devices is of great importance both to business and research due to the large number of applications and services it enables. In most outdoor environments this problem was solved by the introduction of the Global Positioning System (GPS). In indoor or suburban areas however, the GPS signals are often too weak to enable a reliable position estimate. Instead, other techniques must be utilized to provide accurate positioning. One of these is trilateration based on WiFi signal strengths. This is an auspicious technology to use partly because of the large number of access points (APs) in our everyday environment, and partly due to the possibility of measuring signal strength with a normal smartphone. The technique is further enabled by the move to include transmitters at 2.4 as well as 5 GHz in modern APs, providing a better basis for accurate position estimations. Furthermore, the motion sensors present in todayโ€™s smartphones are accurate enough to provide a short-time estimate of the userโ€™s movement with high accuracy. In this thesis, both of these technologies are used to develop an accurate method for indoor positioning, and the contributions can be summed up into two points. The first contribution is an investigation of the behavior of two WiFi frequencies, 2.4 and 5 GHz, where their time dependent noise is proven to be almost uncorrelated with each other. This is then exploited to develop aWiFi-only trilateration algorithm by the use of a particle filter (PF), where the only restriction is that the locations of the APs need to be known. The second contribution is adding an accelerometer and a gyroscope to the algorithm, to provide a more accurate estimation. A step counter is developed using the accelerometer, and the gyroscope detects changes in heading while the WiFi signal strengths give information about the position. This makes it possible to alongside the position also estimate both heading and step length, while still keeping the only restriction of knowing the AP locations. The resulting algorithm produces position estimates with a mean error less than two meters for a specific use case, and around three meters when a more lenient user behavior is allowed

    ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท์„ ์œ„ํ•œ ๋ฌด์„  ์‹ค๋‚ด ์ธก์œ„ ์•Œ๊ณ ๋ฆฌ์ฆ˜

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022.2. ๊น€์„ฑ์ฒ .์‹ค๋‚ด ์œ„์น˜ ๊ธฐ๋ฐ˜ ์„œ๋น„์Šค๋Š” ์Šค๋งˆํŠธํฐ์„ ์ด์šฉํ•œ ์‹ค๋‚ด์—์„œ์˜ ๊ฒฝ๋กœ์•ˆ๋‚ด, ์Šค๋งˆํŠธ ๊ณต์žฅ์—์„œ์˜ ์ž์› ๊ด€๋ฆฌ, ์‹ค๋‚ด ๋กœ๋ด‡์˜ ์ž์œจ์ฃผํ–‰ ๋“ฑ ๋งŽ์€ ๋ถ„์•ผ์— ์ ‘๋ชฉ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท ์‘์šฉ์—๋„ ํ•„์ˆ˜์ ์ธ ๊ธฐ์ˆ ์ด๋‹ค. ๋‹ค์–‘ํ•œ ์œ„์น˜ ๊ธฐ๋ฐ˜ ์„œ๋น„์Šค๋ฅผ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ •ํ™•ํ•œ ์œ„์น˜ ์ •๋ณด๊ฐ€ ํ•„์š”ํ•˜๋ฉฐ, ์ ํ•ฉํ•œ ๊ฑฐ๋ฆฌ ๋ฐ ์œ„์น˜๋ฅผ ์ถ”์ • ๊ธฐ์ˆ ์ด ํ•ต์‹ฌ์ ์ด๋‹ค. ์•ผ์™ธ์—์„œ๋Š” ์œ„์„ฑํ•ญ๋ฒ•์‹œ์Šคํ…œ์„ ์ด์šฉํ•ด์„œ ์œ„์น˜ ์ •๋ณด๋ฅผ ํš๋“ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ์™€์ดํŒŒ์ด ๊ธฐ๋ฐ˜ ์ธก์œ„ ๊ธฐ์ˆ ์— ๋Œ€ํ•ด ๋‹ค๋ฃฌ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์ „ํŒŒ์˜ ์‹ ํ˜ธ ์„ธ๊ธฐ ๋ฐ ๋„๋‹ฌ ์‹œ๊ฐ„์„ ์ด์šฉํ•œ ์ •๋ฐ€ํ•œ ์‹ค๋‚ด ์œ„์น˜ ์ถ”์ •์„ ์œ„ํ•œ ์„ธ ๊ฐ€์ง€ ๊ธฐ์ˆ ์— ๋Œ€ํ•ด ๋‹ค๋ฃฌ๋‹ค. ๋จผ์ €, ๋น„๊ฐ€์‹œ๊ฒฝ๋กœ ํ™˜๊ฒฝ์—์„œ์˜ ๊ฑฐ๋ฆฌ ์ถ”์ • ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผœ ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜ ์ธก์œ„์˜ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€๋“€์–ผ ๋ฐด๋“œ ๋Œ€์—ญ์˜ ์‹ ํ˜ธ์„ธ๊ธฐ๋ฅผ ๊ฐ์‡„๋Ÿ‰์„ ์ธก์ •ํ•˜์—ฌ ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜ ์ธก์œ„ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•  ๋•Œ, ๊ฑฐ๋ฆฌ ์ถ”์ •๋ถ€ ๋‹จ๊ณ„๋งŒ์„ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ํ•™์Šต์„ ์ด์šฉํ•œ ๊นŠ์€ ์‹ ๊ฒฝ๋ง ํšŒ๊ท€ ๋ชจ๋ธ๋กœ ๋Œ€์ฒดํ•œ ๋ฐฉ์•ˆ์ด๋‹ค. ์ ์ ˆํžˆ ํ•™์Šต๋œ ๊นŠ์€ ํšŒ๊ท€ ๋ชจ๋ธ์˜ ์‚ฌ์šฉ์œผ๋กœ ๋น„๊ฐ€์‹œ๊ฒฝ๋กœ ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ฑฐ๋ฆฌ ์ถ”์ • ์˜ค์ฐจ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ฒฐ๊ณผ์ ์œผ๋กœ ์œ„์น˜ ์ถ”์ • ์˜ค์ฐจ ๋˜ํ•œ ๊ฐ์†Œ์‹œ์ผฐ๋‹ค. ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์„ ์‹ค๋‚ด ๊ด‘์„ ์ถ”์  ๊ธฐ๋ฐ˜ ๋ชจ์˜์‹คํ—˜์œผ๋กœ ํ‰๊ฐ€ํ–ˆ์„ ๋•Œ, ๊ธฐ์กด ๊ธฐ๋ฒ•๋“ค์— ๋น„ํ•ด์„œ ์œ„์น˜ ์ถ”์ • ์˜ค์ฐจ๋ฅผ ์ค‘๊ฐ„๊ฐ’์„ ๊ธฐ์ค€์œผ๋กœ 22.3% ์ด์ƒ ์ค„์ผ ์ˆ˜ ์žˆ์Œ์„ ๊ฒ€์ฆํ–ˆ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ, ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์€ ์‹ค๋‚ด์—์„œ์˜ AP ์œ„์น˜๋ณ€ํ™” ๋“ฑ์— ๊ฐ•์ธํ•จ์„ ํ™•์ธํ–ˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„๊ฐ€์‹œ๊ฒฝ๋กœ์—์„œ ๋‹จ์ผ ๋Œ€์—ญ ์ˆ˜์‹ ์‹ ํ˜ธ์„ธ๊ธฐ๋ฅผ ์ธก์ •ํ–ˆ์„ ๋•Œ ๋น„๊ฐ€์‹œ๊ฒฝ๋กœ๊ฐ€ ๋งŽ์€ ์‹ค๋‚ด ํ™˜๊ฒฝ์—์„œ ์œ„์น˜ ์ถ”์ • ์ •ํ™•๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•œ ๋ฐฉ์•ˆ์„ ์ œ์•ˆํ•œ๋‹ค. ๋‹จ์ผ ๋Œ€์—ญ ์ˆ˜์‹ ์‹ ํ˜ธ์„ธ๊ธฐ๋ฅผ ์ด์šฉํ•˜๋Š” ๋ฐฉ์•ˆ์€ ๊ธฐ์กด์— ์ด์šฉ๋˜๋Š” ์™€์ดํŒŒ์ด, ๋ธ”๋ฃจํˆฌ์Šค, ์ง๋น„ ๋“ฑ์˜ ๊ธฐ๋ฐ˜์‹œ์„ค์— ์‰ฝ๊ฒŒ ์ ์šฉ๋  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋„๋ฆฌ ์ด์šฉ๋œ๋‹ค. ํ•˜์ง€๋งŒ ์‹ ํ˜ธ ์„ธ๊ธฐ์˜ ๋‹จ์ผ ๊ฒฝ๋กœ์†์‹ค ๋ชจ๋ธ์„ ์ด์šฉํ•œ ๊ฑฐ๋ฆฌ ์ถ”์ •์€ ์ƒ๋‹นํ•œ ์˜ค์ฐจ๋ฅผ ์ง€๋…€์„œ ์œ„์น˜ ์ถ”์ • ์ •ํ™•๋„๋ฅผ ๊ฐ์†Œ์‹œํ‚จ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์˜ ์›์ธ์€ ๋‹จ์ผ ๊ฒฝ๋กœ์†์‹ค ๋ชจ๋ธ๋กœ๋Š” ์‹ค๋‚ด์—์„œ์˜ ๋ณต์žกํ•œ ์ „ํŒŒ ์ฑ„๋„ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜๊ธฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹ค๋‚ด ์œ„์น˜ ์ถ”์ •์„ ์œ„ํ•œ ๋ชฉ์ ์œผ๋กœ, ์ค‘์ฒฉ๋œ ๋‹ค์ค‘ ์ƒํƒœ ๊ฒฝ๋กœ ๊ฐ์‡„ ๋ชจ๋ธ์„ ์ƒˆ๋กญ๊ฒŒ ์ œ์‹œํ•œ๋‹ค. ์ œ์•ˆํ•œ ๋ชจ๋ธ์€ ๊ฐ€์‹œ๊ฒฝ๋กœ ๋ฐ ๋น„๊ฐ€์‹œ๊ฒฝ๋กœ์—์„œ์˜ ์ฑ„๋„ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ์ž ์žฌ์ ์ธ ํ›„๋ณด ์ƒํƒœ๋“ค์„ ์ง€๋‹Œ๋‹ค. ํ•œ ์ˆœ๊ฐ„์˜ ์ˆ˜์‹  ์‹ ํ˜ธ ์„ธ๊ธฐ ์ธก์ •์น˜์— ๋Œ€ํ•ด ๊ฐ ๊ธฐ์ค€ ๊ธฐ์ง€๊ตญ๋ณ„๋กœ ์ตœ์ ์˜ ๊ฒฝ๋กœ์†์‹ค ๋ชจ๋ธ ์ƒํƒœ๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ํšจ์œจ์ ์ธ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ธฐ์ง€๊ตญ๋ณ„ ๊ฒฝ๋กœ์†์‹ค๋ชจ๋ธ ์ƒํƒœ์˜ ์กฐํ•ฉ์— ๋”ฐ๋ฅธ ์ธก์œ„ ๊ฒฐ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•  ์ง€ํ‘œ๋กœ์„œ ๋น„์šฉํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•˜์˜€๋‹ค. ๊ฐ ๊ธฐ์ง€๊ตญ๋ณ„ ์ตœ์ ์˜ ์ฑ„๋„ ๋ชจ๋ธ์„ ์ฐพ๋Š”๋ฐ ํ•„์š”ํ•œ ๊ณ„์‚ฐ ๋ณต์žก๋„๋Š” ๊ธฐ์ง€๊ตญ ์ˆ˜์˜ ์ฆ๊ฐ€์— ๋”ฐ๋ผ ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋Š”๋ฐ, ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•œ ํƒ์ƒ‰์„ ์ ์šฉํ•˜์—ฌ ๊ณ„์‚ฐ๋Ÿ‰์„ ์–ต์ œํ•˜์˜€๋‹ค. ์‹ค๋‚ด ๊ด‘์„ ์ถ”์  ๋ชจ์˜์‹คํ—˜์„ ํ†ตํ•œ ๊ฒ€์ฆ๊ณผ ์‹ค์ธก ๊ฒฐ๊ณผ๋ฅผ ์ด์šฉํ•œ ๊ฒ€์ฆ์„ ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ์ œ์•ˆํ•œ ๋ฐฉ์•ˆ์€ ์‹ค์ œ ์‹ค๋‚ด ํ™˜๊ฒฝ์—์„œ ๊ธฐ์กด์˜ ๊ธฐ๋ฒ•๋“ค์— ๋น„ํ•ด ์œ„์น˜ ์ถ”์ • ์˜ค์ฐจ๋ฅผ ์•ฝ 31% ๊ฐ์†Œ์‹œ์ผฐ์œผ๋ฉฐ ํ‰๊ท ์ ์œผ๋กœ 1.92 m ์ˆ˜์ค€์˜ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•จ์„ ํ™•์ธํ–ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ FTM ํ”„๋กœํ† ์ฝœ์„ ์ด์šฉํ•œ ์‹ค๋‚ด ์œ„์น˜ ์ถ”์  ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์Šค๋งˆํŠธํฐ์˜ ๋‚ด์žฅ ๊ด€์„ฑ ์„ผ์„œ์™€ ์™€์ดํŒŒ์ด ํ†ต์‹ ์—์„œ ์ œ๊ณตํ•˜๋Š” FTM ํ”„๋กœํ† ์ฝœ์„ ํ†ตํ•œ ๊ฑฐ๋ฆฌ ์ถ”์ •์„ ์ด์šฉํ•˜์—ฌ ์‹ค๋‚ด์—์„œ ์‚ฌ์šฉ์ž์˜ ์œ„์น˜๋ฅผ ์ถ”์ ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์‹ค๋‚ด์˜ ๋ณต์žกํ•œ ๋‹ค์ค‘๊ฒฝ๋กœ ํ™˜๊ฒฝ์œผ๋กœ ์ธํ•œ ํ”ผํฌ ๊ฒ€์ถœ ์‹คํŒจ๋Š” ๊ฑฐ๋ฆฌ ์ธก์ •์น˜์— ํŽธํ–ฅ์„ฑ์„ ์œ ๋ฐœํ•œ๋‹ค. ๋˜ํ•œ ์‚ฌ์šฉํ•˜๋Š” ๋””๋ฐ”์ด์Šค์˜ ์ข…๋ฅ˜์— ๋”ฐ๋ผ ์˜ˆ์ƒ์น˜ ๋ชปํ•œ ๊ฑฐ๋ฆฌ ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ FTM ๊ฑฐ๋ฆฌ ์ถ”์ •์„ ์ด์šฉํ•  ๋•Œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์˜ค์ฐจ๋“ค์„ ๊ณ ๋ คํ•˜๊ณ  ์ด๋ฅผ ๋ณด์ƒํ•˜๋Š” ๋ฐฉ์•ˆ์— ๋Œ€ํ•ด ์ œ์‹œํ•œ๋‹ค. ํ™•์žฅ ์นผ๋งŒ ํ•„ํ„ฐ์™€ ๊ฒฐํ•ฉํ•˜์—ฌ FTM ๊ฒฐ๊ณผ๋ฅผ ์‚ฌ์ „ํ•„ํ„ฐ๋ง ํ•˜์—ฌ ์ด์ƒ๊ฐ’์„ ์ œ๊ฑฐํ•˜๊ณ , ๊ฑฐ๋ฆฌ ์ธก์ •์น˜์˜ ํŽธํ–ฅ์„ฑ์„ ์ œ๊ฑฐํ•˜์—ฌ ์œ„์น˜ ์ถ”์  ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. ์‹ค๋‚ด์—์„œ์˜ ์‹คํ—˜ ๊ฒฐ๊ณผ ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ฑฐ์น˜ ์ธก์ •์น˜์˜ ํŽธํ–ฅ์„ฑ์„ ์•ฝ 44-65% ๊ฐ์†Œ์‹œ์ผฐ์œผ๋ฉฐ ์ตœ์ข…์ ์œผ๋กœ ์‚ฌ์šฉ์ž์˜ ์œ„์น˜๋ฅผ ์„œ๋ธŒ๋ฏธํ„ฐ๊ธ‰์œผ๋กœ ์ถ”์ ํ•  ์ˆ˜ ์žˆ์Œ์„ ๊ฒ€์ฆํ–ˆ๋‹ค.Indoor location-based services (LBS) can be combined with various applications such as indoor navigation for smartphone users, resource management in smart factories, and autonomous driving of robots. It is also indispensable for Internet of Things (IoT) applications. For various LBS, accurate location information is essential. Therefore, a proper ranging and positioning algorithm is important. For outdoors, the global navigation satellite system (GNSS) is available to provide position information. However, the GNSS is inappropriate indoors owing to the issue of the blocking of the signals from satellites. It is necessary to develop a technology that can replace GNSS in GNSS-denied environments. Among the various alternative systems, the one of promising technology is to use a Wi-Fi system that has already been applied to many commercial devices, and the infrastructure is in place in many regions. In this dissertation, Wi-Fi based indoor localization methods are presented. In the specific, I propose the three major issues related to accurate indoor localization using received signal strength (RSS) and fine timing measurement (FTM) protocol in the 802.11 standard for my dissertation topics. First, I propose a hybrid localization algorithm to boost the accuracy of range-based localization by improving the ranging accuracy under indoor non-line-of-sight (NLOS) conditions. I replaced the ranging part of the rule-based localization method with a deep regression model that uses data-driven learning with dual-band received signal strength (RSS). The ranging error caused by the NLOS conditions was effectively reduced by using the deep regression method. As a consequence, the positioning error could be reduced under NLOS conditions. The performance of the proposed method was verified through a ray-tracing-based simulation for indoor spaces. The proposed scheme showed a reduction in the positioning error of at least 22.3% in terms of the median root mean square error. Next, I study on positioning algorithm that considering NLOS conditions for each APs, using single band RSS measurement. The single band RSS information is widely used for indoor localization because they can be easily implemented by using existing infrastructure like Wi-Fi, Blutooth, or Zigbee. However, range estimation with a single pathloss model produces considerable errors, which degrade the positioning performance. This problem mainly arises because the single pathloss model cannot reflect diverse indoor radio wave propagation characteristics. In this study, I develop a new overlapping multi-state model to consider multiple candidates of pathloss models including line-of-sight (LOS) and NLOS states, and propose an efficient way to select a proper model for each reference node involved in the localization process. To this end, I formulate a cost function whose value varies widely depending on the choice of pathloss model of each access point. Because the computational complexity to find an optimal channel model for each reference node exponentially increases with the number of reference nodes, I apply a genetic algorithm to significantly reduce the complexity so that the proposed method can be executed in real-time. Experimental validations with ray-tracing simulations and RSS measurements at a real site confirm the improvement of localization accuracy for Wi-Fi in indoor environments. The proposed method achieves up to 1.92~m mean positioning error under a practical indoor environment and produces a performance improvement of 31.09\% over the benchmark scenario. Finally, I investigate accurate indoor tracking algorithm using FTM protocol in this dissertation. By using the FTM ranging and the built-in sensors in a smartphone, it is possible to track the user's location in indoor. However, the failure of first peak detection due to the multipath effect causes a bias in the FTM ranging results in the practical indoor environment. Additionally, the unexpected ranging error dependent on device type also degrades the indoor positioning accuracy. In this study, I considered the factors of ranging error in the FTM protocol in practical indoor environment, and proposed a method to compensate ranging error. I designed an EKF-based tracking algorithm that adaptively removes outliers from the FTM result and corrects bias to increase positioning accuracy. The experimental results verified that the proposed algorithm reduces the average ofthe ranging bias by 43-65\% in an indoor scenarios, and can achieve the sub-meter accuracy in average route mean squared error of user's position in the experiment scenarios.Abstract i Contents iv List of Tables vi List of Figures vii 1 INTRODUCTION 1 2 Hybrid Approach for Indoor Localization Using Received Signal Strength of Dual-BandWi-Fi 6 2.1 Motivation 6 2.2 Preliminary 8 2.3 System model 11 2.4 Proposed Ranging Method 13 2.5 Performance Evaluation 16 2.5.1 Ray-Tracing-Based Simulation 16 2.5.2 Analysis of the Ranging Accuracy 21 2.5.3 Analysis of the Neural Network Structure 25 2.5.4 Analysis of Positioning Accuracy 26 2.6 Summary 29 3 Genetic Algorithm for Path Loss Model Selection in Signal Strength Based Indoor Localization 31 3.1 Motivation 31 3.2 Preliminary 34 3.2.1 RSS-based Ranging Techniques 35 3.2.2 Positioning Technique 37 3.3 Proposed localization method 38 3.3.1 Localization Algorithm with Overlapped Multi-State Path Loss Model 38 3.3.2 Localization with Genetic Algorithm-Based Search 41 3.4 Performance evaluation 46 3.4.1 Numerical simulation 50 3.4.2 Experimental results 56 3.5 Summary 60 4 Indoor User Tracking with Self-calibrating Range Bias Using FTM Protocol 62 4.1 Motivation 62 4.2 Preliminary 63 4.2.1 FTM ranging 63 4.2.2 PDR-based trajectory estimation 65 4.3 EKF design for adaptive compensation of ranging bias 66 4.4 Performance evaluation 69 4.4.1 Experimental scenario 69 4.4.2 Experimental results 70 4.5 Summary 75 5 Conclusion 76 Abstract (In Korean) 89๋ฐ•
    • โ€ฆ
    corecore