581 research outputs found

    Re-verification of a Lip Synchronization Protocol using Robust Reachability

    Get PDF
    The timed automata formalism is an important model for specifying and analysing real-time systems. Robustness is the correctness of the model in the presence of small drifts on clocks or imprecision in testing guards. A symbolic algorithm for the analysis of the robustness of timed automata has been implemented. In this paper, we re-analyse an industrial case lip synchronization protocol using the new robust reachability algorithm. This lip synchronization protocol is an interesting case because timing aspects are crucial for the correctness of the protocol. Several versions of the model are considered: with an ideal video stream, with anchored jitter, and with non-anchored jitter

    Re-verification of a Lip Synchronization Algorithm using robust reachability

    Get PDF
    The timed automata formalism is an important model for specifying and analysing real-time systems. Robustness is the correctness of the model in the presence of small drifts on clocks or imprecision in testing guards. A symbolic algorithm for the analysis of the robustness of timed automata has been implemented. In this paper we re-analyse an industrial case lip synchronization protocol using the new robust reachability algorithm.This lip synchronization protocol is an interesting case because timing aspect are crucial for the correctness of the protocol. Several versions of the model are considered, with an ideal video stream, with anchored jitter, and with non-anchored jitter

    Language Emptiness of Continuous-Time Parametric Timed Automata

    Full text link
    Parametric timed automata extend the standard timed automata with the possibility to use parameters in the clock guards. In general, if the parameters are real-valued, the problem of language emptiness of such automata is undecidable even for various restricted subclasses. We thus focus on the case where parameters are assumed to be integer-valued, while the time still remains continuous. On the one hand, we show that the problem remains undecidable for parametric timed automata with three clocks and one parameter. On the other hand, for the case with arbitrary many clocks where only one of these clocks is compared with (an arbitrary number of) parameters, we show that the parametric language emptiness is decidable. The undecidability result tightens the bounds of a previous result which assumed six parameters, while the decidability result extends the existing approaches that deal with discrete-time semantics only. To the best of our knowledge, this is the first positive result in the case of continuous-time and unbounded integer parameters, except for the rather simple case of single-clock automata

    Setting Parameters for Biological Models With ANIMO

    Get PDF
    ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions between biological entities in form of a graph, while the parameters determine the speed of occurrence of such interactions. When a mismatch is observed between the behavior of an ANIMO model and experimental data, we want to update the model so that it explains the new data. In general, the topology of a model can be expanded with new (known or hypothetical) nodes, and enables it to match experimental data. However, the unrestrained addition of new parts to a model causes two problems: models can become too complex too fast, to the point of being intractable, and too many parts marked as "hypothetical" or "not known" make a model unrealistic. Even if changing the topology is normally the easier task, these problems push us to try a better parameter fit as a first step, and resort to modifying the model topology only as a last resource. In this paper we show the support added in ANIMO to ease the task of expanding the knowledge on biological networks, concentrating in particular on the parameter settings

    Quantitative Robustness Analysis of Flat Timed Automata

    No full text
    Whereas formal verification of timed systems has become a very active field of research, the idealized mathematical semantics of timed automata cannot be faithfully implemented. Recently, several works have studied a parametric semantics of timed automata related to implementability: if the specification is met for some positive value of the parameter, then there exists a correct implementation. In addition, the value of the parameter gives lower bounds on sufficient resources for the implementation. In this work, we present a symbolic algorithm for the computation of the parametric reachability set under this semantics for flat timed automata. As a consequence, we can compute the largest value of the parameter for a timed automaton to be safe

    Revisiting Underapproximate Reachability for Multipushdown Systems

    Full text link
    Boolean programs with multiple recursive threads can be captured as pushdown automata with multiple stacks. This model is Turing complete, and hence, one is often interested in analyzing a restricted class that still captures useful behaviors. In this paper, we propose a new class of bounded under approximations for multi-pushdown systems, which subsumes most existing classes. We develop an efficient algorithm for solving the under-approximate reachability problem, which is based on efficient fix-point computations. We implement it in our tool BHIM and illustrate its applicability by generating a set of relevant benchmarks and examining its performance. As an additional takeaway, BHIM solves the binary reachability problem in pushdown automata. To show the versatility of our approach, we then extend our algorithm to the timed setting and provide the first implementation that can handle timed multi-pushdown automata with closed guards.Comment: 52 pages, Conference TACAS 202

    Dense Integer-Complete Synthesis for Bounded Parametric Timed Automata

    Full text link
    Ensuring the correctness of critical real-time systems, involving concurrent behaviors and timing requirements, is crucial. Timed automata extend finite-state automata with clocks, compared in guards and invariants with integer constants. Parametric timed automata (PTAs) extend timed automata with timing parameters. Parameter synthesis aims at computing dense sets of valuations for the timing parameters, guaranteeing a good behavior. However, in most cases, the emptiness problem for reachability (i.e., whether the emptiness of the parameter valuations set for which some location is reachable) is undecidable for PTAs and, as a consequence, synthesis procedures do not terminate in general, even for bounded parameters. In this paper, we introduce a parametric extrapolation, that allows us to derive an underapproximation in the form of linear constraints containing not only all the integer points ensuring reachability, but also all the (non-necessarily integer) convex combinations of these integer points, for general PTAs with a bounded parameter domain. We also propose two further algorithms synthesizing parameter valuations guaranteeing unavoidability, and preservation of the untimed behavior w.r.t. a reference parameter valuation, respectively. Our algorithms terminate and can output constraints arbitrarily close to the complete result. We demonstrate their applicability and efficiency using the tool Rom\'eo on two classical benchmarks.Comment: This is an extended version of the paper by the same authors published in the proceedings of the 9th International Workshop on Reachability Problems (RP 2015
    corecore