6,134 research outputs found

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Learning stable and predictive structures in kinetic systems: Benefits of a causal approach

    Get PDF
    Learning kinetic systems from data is one of the core challenges in many fields. Identifying stable models is essential for the generalization capabilities of data-driven inference. We introduce a computationally efficient framework, called CausalKinetiX, that identifies structure from discrete time, noisy observations, generated from heterogeneous experiments. The algorithm assumes the existence of an underlying, invariant kinetic model, a key criterion for reproducible research. Results on both simulated and real-world examples suggest that learning the structure of kinetic systems benefits from a causal perspective. The identified variables and models allow for a concise description of the dynamics across multiple experimental settings and can be used for prediction in unseen experiments. We observe significant improvements compared to well established approaches focusing solely on predictive performance, especially for out-of-sample generalization

    Advancing multiple model-based control of complex biological systems: Applications in T cell biology

    Get PDF
    Activated CD4+ T cells are important regulators of the adaptive immune response against invading pathogens and cancerous host cells. The process of activation is mediated by the T cell receptor and a vast network of intracellular signal transduction pathways, which recognize and interpret antigenic signals to determine the cell\u27s response. The critical role of these early signaling events in normal cell function and the pathogenesis of disease ultimately make them attractive therapeutic targets for numerous autoimmune diseases and cancers. Scientists increasingly rely on predictive mathematical models and control-theoretic tools to design effective strategies to manipulate cellular processes for the advancement of knowledge or therapeutic gain. However, the application of modern control theory to intracellular signal transduction is complicated by a unique set of intrinsic properties and technical limitations. These include complexities in the signaling network such as crosstalk, feedback and nonlinearity, and a dearth of rapid quantitative measurement techniques and specific and orthogonal modulators, the major consequences of which are uncertainty in the model representation and the prevention of real-time measurement feedback. Integrating such uncertainties and limitations into a control-theoretic approach under practical constraints represents an open challenge in controller design. The work presented in this dissertation addresses these challenges through the development of a computational methodology to aid in the design of experimental strategies to predictably manipulate intracellular signaling during the process of CD4+ T cell activation. This work achieves two main objectives: (1) the development of a generalized control-theoretic tool to effectively control uncertain nonlinear systems in the absence of real-time measurement feedback, and (2) the development and calibration of a predictive mathematical model (or collection of models) of CD4+ T cell activation to help derive experimental inputs to robustly force the system dynamics along prescribed trajectories. The crux of this strategy is the use of multiple data-supported models to inform the controller design. These models may represent alternative hypotheses for signaling mechanisms and give rise to distinct network topologies or kinetic rate scenarios and yet remain consistent with available data. Here, a novel adaptive weighting algorithm predicts variations in the models\u27 predictive accuracy over the admissible input space to produce a more reliable compromise solution from multiple competing objectives, a result corroborated by several experimental studies. This dissertation provides a practical means to effectively utilize the collective predictive capacity of multiple prediction models to predictably and robustly direct CD4 + T cells to exhibit regulatory, helper and anergic T cell-like signaling profiles through pharmacological manipulations in the absence of measurement feedback. The framework and procedures developed herein are expected to widely applicable to a more general class of continuous dynamical systems for which real-time feedback is not readily available. Furthermore, the ability to predictably and precisely control biological systems could greatly advance how we study and interrogate such systems and aid in the development of novel therapeutic designs for the treatment of disease

    Generalised additive multiscale wavelet models constructed using particle swarm optimisation and mutual information for spatio-temporal evolutionary system representation

    Get PDF
    A new class of generalised additive multiscale wavelet models (GAMWMs) is introduced for high dimensional spatio-temporal evolutionary (STE) system identification. A novel two-stage hybrid learning scheme is developed for constructing such an additive wavelet model. In the first stage, a new orthogonal projection pursuit (OPP) method, implemented using a particle swarm optimisation(PSO) algorithm, is proposed for successively augmenting an initial coarse wavelet model, where relevant parameters of the associated wavelets are optimised using a particle swarm optimiser. The resultant network model, obtained in the first stage, may however be a redundant model. In the second stage, a forward orthogonal regression (FOR) algorithm, implemented using a mutual information method, is then applied to refine and improve the initially constructed wavelet model. The proposed two-stage hybrid method can generally produce a parsimonious wavelet model, where a ranked list of wavelet functions, according to the capability of each wavelet to represent the total variance in the desired system output signal is produced. The proposed new modelling framework is applied to real observed images, relative to a chemical reaction exhibiting a spatio-temporal evolutionary behaviour, and the associated identification results show that the new modelling framework is applicable and effective for handling high dimensional identification problems of spatio-temporal evolution sytems

    Modeling and Optimization of Dynamical Systems in Epidemiology using Sparse Grid Interpolation

    Get PDF
    Infectious diseases pose a perpetual threat across the globe, devastating communities, and straining public health resources to their limit. The ease and speed of modern communications and transportation networks means policy makers are often playing catch-up to nascent epidemics, formulating critical, yet hasty, responses with insufficient, possibly inaccurate, information. In light of these difficulties, it is crucial to first understand the causes of a disease, then to predict its course, and finally to develop ways of controlling it. Mathematical modeling provides a methodical, in silico solution to all of these challenges, as we explore in this work. We accomplish these tasks with the aid of a surrogate modeling technique known as sparse grid interpolation, which approximates dynamical systems using a compact polynomial representation. Our contributions to the disease modeling community are encapsulated in the following endeavors. We first explore transmission and recovery mechanisms for disease eradication, identifying a relationship between the reproductive potential of a disease and the maximum allowable disease burden. We then conduct a comparative computational study to improve simulation fits to existing case data by exploiting the approximation properties of sparse grid interpolants both on the global and local levels. Finally, we solve a joint optimization problem of periodically selecting field sensors and deploying public health interventions to progressively enhance the understanding of a metapopulation-based infectious disease system using a robust model predictive control scheme

    Automatic Extraction of Ordinary Differential Equations from Data: Sparse Regression Tools for System Identification

    Get PDF
    Studying nonlinear systems across engineering, physics, economics, biology, and chemistry often hinges upon successfully discovering their underlying dynamics. However, despite the abundance of data in today's world, a complete comprehension of these governing equations often remains elusive, posing a significant challenge. Traditional system identification methods for building mathematical models to describe these dynamics can be time-consuming, error-prone, and limited by data availability. This thesis presents three comprehensive strategies to address these challenges and automate model discovery. The procedures outlined here employ classic statistical and machine learning methods, such as signal filtering, sparse regression, bootstrap sampling, Bayesian inference, and unsupervised learning algorithms, to capture complex and nonlinear relationships in data. Building on these foundational techniques, the proposed processes offer a reliable and efficient approach to identifying models of ordinary differential equations from data, differing from and complementing existing frameworks. The results presented here provide rigorous benchmarking against state-of-the-art algorithms, demonstrating the proposed methods' effectiveness in model discovery and highlighting the potential for discovering governing equations across applications such as weather forecasting, chemical reaction and electrical circuit modelling, and predator-prey dynamics. These methods can aid in solving critical decision-making problems, including optimising resource allocation, predicting system failures, and facilitating adaptive control in various domains. Ultimately, the strategies developed in this thesis are designed to integrate seamlessly into current workflows, thereby promoting data-driven decision-making and enhancing understanding of complex system dynamics
    corecore