782 research outputs found

    On feedback stabilization of linear switched systems via switching signal control

    Full text link
    Motivated by recent applications in control theory, we study the feedback stabilizability of switched systems, where one is allowed to chose the switching signal as a function of x(t)x(t) in order to stabilize the system. We propose new algorithms and analyze several mathematical features of the problem which were unnoticed up to now, to our knowledge. We prove complexity results, (in-)equivalence between various notions of stabilizability, existence of Lyapunov functions, and provide a case study for a paradigmatic example introduced by Stanford and Urbano.Comment: 19 pages, 3 figure

    Feedback stabilization of dynamical systems with switched delays

    Full text link
    We analyze a classification of two main families of controllers that are of interest when the feedback loop is subject to switching propagation delays due to routing via a wireless multi-hop communication network. We show that we can cast this problem as a subclass of classical switching systems, which is a non-trivial generalization of classical LTI systems with timevarying delays. We consider both cases where delay-dependent and delay independent controllers are used, and show that both can be modeled as switching systems with unconstrained switchings. We provide NP-hardness results for the stability verification problem, and propose a general methodology for approximate stability analysis with arbitrary precision. We finally give evidence that non-trivial design problems arise for which new algorithmic methods are needed

    Stabilization of systems with asynchronous sensors and controllers

    Full text link
    We study the stabilization of networked control systems with asynchronous sensors and controllers. Offsets between the sensor and controller clocks are unknown and modeled as parametric uncertainty. First we consider multi-input linear systems and provide a sufficient condition for the existence of linear time-invariant controllers that are capable of stabilizing the closed-loop system for every clock offset in a given range of admissible values. For first-order systems, we next obtain the maximum length of the offset range for which the system can be stabilized by a single controller. Finally, this bound is compared with the offset bounds that would be allowed if we restricted our attention to static output feedback controllers.Comment: 32 pages, 6 figures. This paper was partially presented at the 2015 American Control Conference, July 1-3, 2015, the US

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation

    Minimal data rate stabilization of nonlinear systems over networks with large delays

    Get PDF
    Control systems over networks with a finite data rate can be conveniently modeled as hybrid (impulsive) systems. For the class of nonlinear systems in feedfoward form, we design a hybrid controller which guarantees stability, in spite of the measurement noise due to the quantization, and of an arbitrarily large delay which affects the communication channel. The rate at which feedback packets are transmitted from the sensors to the actuators is shown to be arbitrarily close to the infimal one.Comment: 16 pages; references have now been adde

    Robust stability and stabilization of discrete singular systems: An equivalent characterization

    Get PDF
    This note deals with the problems of robust stability and stabilization for uncertain discrete-time singular systems. The parameter uncertainties are assumed to be time-invariant and norm-bounded appearing in both the state and input matrices. A new necessary and sufficient condition for a discrete-time singular system to be regular, causal and stable is proposed in terms of a strict linear matrix inequality (LMI). Based on this, the concepts of generalized quadratic stability and generalized quadratic stabilization for uncertain discrete-time singular systems are introduced. Necessary and sufficient conditions for generalized quadratic stability and generalized quadratic stabilization are obtained in terms of a strict LMI and a set of matrix inequalities, respectively. With these conditions, the problems of robust stability and robust stabilization are solved. An explicit expression of a desired state feedback controller is also given, which involves no matrix decomposition. Finally, an illustrative example is provided to demonstrate the applicability of the proposed approach.published_or_final_versio

    Stabilizability Analysis of Multiple Model Control with Probabilistic: Stabilizability Analysis of Multiple Model Control with Probabilistic

    Get PDF
    In this paper, we derive some useful necessary conditions for stabilizability of multiple model control using a bank of stabilizing state feedback controllers. The outputs of this set are weighted by their probabilities as a soft switching system and together fed back to the plant. We study quadratic stabilizability of this closed loop soft switching system for both continuous and discrete-time hybrid system. For the continuous-time hybrid system, a bound on sum of eigenvalues of  is found when their derivatives of Lyapunov functions are upper bounded.  For discrete-time hybrid system, a new stabilizability condition of soft switching signals is presented
    corecore