1,673 research outputs found

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Modelling and solving healthcare decision making problems under uncertainty

    Get PDF
    The efficient management of healthcare services is a great challenge for healthcare managers because of ageing populations, rising healthcare costs, and complex operation and service delivery systems. The challenge is intensified due to the fact that healthcare systems involve various uncertainties. Operations Research (OR) can be used to model and solve several healthcare decision making problems at strategic, tactical and also operational levels. Among different stages of healthcare decision making, resoure allocation and capacity planning play an important role for the overall performance of the complex systems. This thesis aims to develop modelling and solution tools to support healthcare decision making process within dynamic and stochastic systems. In particular, we are concerned with stochastic optimization problems, namely i) capacity planning in a stem-cell donation network, ii) resource allocation in a healthcare outsourcing network and iii) real-time surgery planning. The patient waiting times and operational costs are considered as the main performance indicators in these healthcare settings. The uncertainties arising in patient arrivals and service durations are integrated into the decision making as the most significant factors affecting the overall performance of the underlying healthcare systems. We use stochastic programming, a collection of OR tools for decision-making under uncertainty, to obtain robust solutions against these uncertainties. Due to complexities of the underlying stochastic optimization models such as large real-life problem instances and non-convexity, these models cannot be solved efficiently by exact methods within reasonable computation time. Thus, we employ approximate solution approaches to obtain feasible decisions close to the optimum. The computational experiments are designed to illustrate the performance of the proposed approximate methods. Moreover, we analyze the numerical results to provide some managerial insights to aid the decision-making processes. The numerical results show the benefits of integrating the uncertainty into decision making process and the impact of various factors in the overall performance of the healthcare systems

    Resilient Wide-Area Damping Control Using GrHDP to Tolerate Communication Failures

    Get PDF
    This paper proposes a goal representation heuristic dynamic programming (GrHDP)-based resilient wide-area damping controller (WADC) for voltage source converter high voltage direct current (VSC-HVDC) employing redundant wide-area signals as input signals to tolerate communication failure. A supervisory fuzzy logic module is proposed and added in the resilient WADC to adjust the learning rate of GrHDP online when encountering communication failure. Moreover, the resilient WADC does not need the accurate model of the power system and has the adaptability to the variation of operation conditions and communication failures. Case studies are conducted in a 10-machine 39-bus system with one VSC-HVDC transmission line. Simulation results show that the resilient WADC can counteract the negative impact of communication failures on control performance under a wide range of system operating conditions

    Applications of stochastic modeling in air traffic management:Methods, challenges and opportunities for solving air traffic problems under uncertainty

    Get PDF
    In this paper we provide a wide-ranging review of the literature on stochastic modeling applications within aviation, with a particular focus on problems involving demand and capacity management and the mitigation of air traffic congestion. From an operations research perspective, the main techniques of interest include analytical queueing theory, stochastic optimal control, robust optimization and stochastic integer programming. Applications of these techniques include the prediction of operational delays at airports, pre-tactical control of aircraft departure times, dynamic control and allocation of scarce airport resources and various others. We provide a critical review of recent developments in the literature and identify promising research opportunities for stochastic modelers within air traffic management

    Optimal tracking control for uncertain nonlinear systems with prescribed performance via critic-only ADP

    Get PDF
    This paper addresses the tracking control problem for a class of nonlinear systems described by Euler-Lagrange equations with uncertain system parameters. The proposed control scheme is capable of guaranteeing prescribed performance from two aspects: 1) A special parameter estimator with prescribed performance properties is embedded in the control scheme. The estimator not only ensures the exponential convergence of the estimation errors under relaxed excitation conditions but also can restrict all estimates to pre-determined bounds during the whole estimation process; 2) The proposed controller can strictly guarantee the user-defined performance specifications on tracking errors, including convergence rate, maximum overshoot, and residual set. More importantly, it has the optimizing ability for the trade-off between performance and control cost. A state transformation method is employed to transform the constrained optimal tracking control problem to an unconstrained stationary optimal problem. Then a critic-only adaptive dynamic programming algorithm is designed to approximate the solution of the Hamilton-Jacobi-Bellman equation and the corresponding optimal control policy. Uniformly ultimately bounded stability is guaranteed via Lyapunov-based stability analysis. Finally, numerical simulation results demonstrate the effectiveness of the proposed control scheme
    corecore