2,924 research outputs found

    Sound Event Localization, Detection, and Tracking by Deep Neural Networks

    Get PDF
    In this thesis, we present novel sound representations and classification methods for the task of sound event localization, detection, and tracking (SELDT). The human auditory system has evolved to localize multiple sound events, recognize and further track their motion individually in an acoustic environment. This ability of humans makes them context-aware and enables them to interact with their surroundings naturally. Developing similar methods for machines will provide an automatic description of social and human activities around them and enable machines to be context-aware similar to humans. Such methods can be employed to assist the hearing impaired to visualize sounds, for robot navigation, and to monitor biodiversity, the home, and cities. A real-life acoustic scene is complex in nature, with multiple sound events that are temporally and spatially overlapping, including stationary and moving events with varying angular velocities. Additionally, each individual sound event class, for example, a car horn can have a lot of variabilities, i.e., different cars have different horns, and within the same model of the car, the duration and the temporal structure of the horn sound is driver dependent. Performing SELDT in such overlapping and dynamic sound scenes while being robust is challenging for machines. Hence we propose to investigate the SELDT task in this thesis and use a data-driven approach using deep neural networks (DNNs). The sound event detection (SED) task requires the detection of onset and offset time for individual sound events and their corresponding labels. In this regard, we propose to use spatial and perceptual features extracted from multichannel audio for SED using two different DNNs, recurrent neural networks (RNNs) and convolutional recurrent neural networks (CRNNs). We show that using multichannel audio features improves the SED performance for overlapping sound events in comparison to traditional single-channel audio features. The proposed novel features and methods produced state-of-the-art performance for the real-life SED task and won the IEEE AASP DCASE challenge consecutively in 2016 and 2017. Sound event localization is the task of spatially locating the position of individual sound events. Traditionally, this has been approached using parametric methods. In this thesis, we propose a CRNN for detecting the azimuth and elevation angles of multiple temporally overlapping sound events. This is the first DNN-based method performing localization in complete azimuth and elevation space. In comparison to parametric methods which require the information of the number of active sources, the proposed method learns this information directly from the input data and estimates their respective spatial locations. Further, the proposed CRNN is shown to be more robust than parametric methods in reverberant scenarios. Finally, the detection and localization tasks are performed jointly using a CRNN. This method additionally tracks the spatial location with time, thus producing the SELDT results. This is the first DNN-based SELDT method and is shown to perform equally with stand-alone baselines for SED, localization, and tracking. The proposed SELDT method is evaluated on nine datasets that represent anechoic and reverberant sound scenes, stationary and moving sources with varying velocities, a different number of overlapping sound events and different microphone array formats. The results show that the SELDT method can track multiple overlapping sound events that are both spatially stationary and moving

    Three-Dimensional Geometry Inference of Convex and Non-Convex Rooms using Spatial Room Impulse Responses

    Get PDF
    This thesis presents research focused on the problem of geometry inference for both convex- and non-convex-shaped rooms, through the analysis of spatial room impulse responses. Current geometry inference methods are only applicable to convex-shaped rooms, requiring between 6--78 discretely spaced measurement positions, and are only accurate under certain conditions, such as a first-order reflection for each boundary being identifiable across all, or some subset of, these measurements. This thesis proposes that by using compact microphone arrays capable of capturing spatiotemporal information, boundary locations, and hence room shape for both convex and non-convex cases, can be inferred, using only a sufficient number of measurement positions to ensure each boundary has a first-order reflection attributable to, and identifiable in, at least one measurement. To support this, three research areas are explored. Firstly, the accuracy of direction-of-arrival estimation for reflections in binaural room impulse responses is explored, using a state-of-the-art methodology based on binaural model fronted neural networks. This establishes whether a two-microphone array can produce accurate enough direction-of-arrival estimates for geometry inference. Secondly, a spherical microphone array based spatiotemporal decomposition workflow for analysing reflections in room impulse responses is explored. This establishes that simultaneously arriving reflections can be individually detected, relaxing constraints on measurement positions. Finally, a geometry inference method applicable to both convex and more complex non-convex shaped rooms is proposed. Therefore, this research expands the possible scenarios in which geometry inference can be successfully applied at a level of accuracy comparable to existing work, through the use of commonly used compact microphone arrays. Based on these results, future improvements to this approach are presented and discussed in detail

    A Four-Stage Data Augmentation Approach to ResNet-Conformer Based Acoustic Modeling for Sound Event Localization and Detection

    Full text link
    In this paper, we propose a novel four-stage data augmentation approach to ResNet-Conformer based acoustic modeling for sound event localization and detection (SELD). First, we explore two spatial augmentation techniques, namely audio channel swapping (ACS) and multi-channel simulation (MCS), to deal with data sparsity in SELD. ACS and MDS focus on augmenting the limited training data with expanding direction of arrival (DOA) representations such that the acoustic models trained with the augmented data are robust to localization variations of acoustic sources. Next, time-domain mixing (TDM) and time-frequency masking (TFM) are also investigated to deal with overlapping sound events and data diversity. Finally, ACS, MCS, TDM and TFM are combined in a step-by-step manner to form an effective four-stage data augmentation scheme. Tested on the Detection and Classification of Acoustic Scenes and Events (DCASE) 2020 data sets, our proposed augmentation approach greatly improves the system performance, ranking our submitted system in the first place in the SELD task of DCASE 2020 Challenge. Furthermore, we employ a ResNet-Conformer architecture to model both global and local context dependencies of an audio sequence to yield further gains over those architectures used in the DCASE 2020 SELD evaluations.Comment: 12 pages, 8 figure

    Spatial dissection of a soundfield using spherical harmonic decomposition

    Get PDF
    A real-world soundfield is often contributed by multiple desired and undesired sound sources. The performance of many acoustic systems such as automatic speech recognition, audio surveillance, and teleconference relies on its ability to extract the desired sound components in such a mixed environment. The existing solutions to the above problem are constrained by various fundamental limitations and require to enforce different priors depending on the acoustic condition such as reverberation and spatial distribution of sound sources. With the growing emphasis and integration of audio applications in diverse technologies such as smart home and virtual reality appliances, it is imperative to advance the source separation technology in order to overcome the limitations of the traditional approaches. To that end, we exploit the harmonic decomposition model to dissect a mixed soundfield into its underlying desired and undesired components based on source and signal characteristics. By analysing the spatial projection of a soundfield, we achieve multiple outcomes such as (i) soundfield separation with respect to distinct source regions, (ii) source separation in a mixed soundfield using modal coherence model, and (iii) direction of arrival (DOA) estimation of multiple overlapping sound sources through pattern recognition of the modal coherence of a soundfield. We first employ an array of higher order microphones for soundfield separation in order to reduce hardware requirement and implementation complexity. Subsequently, we develop novel mathematical models for modal coherence of noisy and reverberant soundfields that facilitate convenient ways for estimating DOA and power spectral densities leading to robust source separation algorithms. The modal domain approach to the soundfield/source separation allows us to circumvent several practical limitations of the existing techniques and enhance the performance and robustness of the system. The proposed methods are presented with several practical applications and performance evaluations using simulated and real-life dataset

    Sound Source Localization and Modeling: Spherical Harmonics Domain Approaches

    Get PDF
    Sound source localization has been an important research topic in the acoustic signal processing community because of its wide use in many acoustic applications, including speech separation, speech enhancement, sound event detection, automatic speech recognition, automated camera steering, and virtual reality. In the recent decade, there is a growing interest in the research of sound source localization using higher-order microphone arrays, which are capable of recording and analyzing the soundfield over a target spatial area. This thesis studies a novel source feature called the relative harmonic coefficient, that easily estimated from the higher-order microphone measurements. This source feature has direct applications for sound source localization due to its sole dependence on the source position. This thesis proposes two novel sound source localization algorithms using the relative harmonic coefficients: (i) a low-complexity single source localization approach that localizes the source' elevation and azimuth separately. This approach is also appliable to acoustic enhancement for the higher-order microphone array recordings; (ii) a semi-supervised multi-source localization algorithm in a noisy and reverberant environment. Although this approach uses a learning schema, it still has a strong potential to be implemented in practice because only a limited number of labeled measurements are required. However, this algorithm has an inherent limitation as it requires the availability of single-source components. Thus, it is unusable in scenarios where the original recordings have limited single-source components (e.g., multiple sources simultaneously active). To address this issue, we develop a novel MUSIC framework based approach that directly uses simultaneous multi-source recordings. This developed MUSIC approach uses robust measurements of relative sound pressure from the higher-order microphone and is shown to be more suitable in noisy environments than the traditional MUSIC method. While the proposed approaches address the source localization problems, in practice, the broader problem of source localization has some more common challenges, which have received less attention. One such challenge is the common assumption of the sound sources being omnidirectional, which is hardly the case with a typical commercial loudspeaker. Therefore, in this thesis, we analyze the broader problem of analyzing directional characteristics of the commercial loudspeakers by deriving equivalent theoretical acoustic models. Several acoustic models are investigated, including plane waves decomposition, point source decomposition, and mixed source decomposition. We finally conduct extensive experimental examinations to see which acoustic model has more similar characteristics with commercial loudspeakers

    Semi-Supervised Sound Source Localization Based on Manifold Regularization

    Full text link
    Conventional speaker localization algorithms, based merely on the received microphone signals, are often sensitive to adverse conditions, such as: high reverberation or low signal to noise ratio (SNR). In some scenarios, e.g. in meeting rooms or cars, it can be assumed that the source position is confined to a predefined area, and the acoustic parameters of the environment are approximately fixed. Such scenarios give rise to the assumption that the acoustic samples from the region of interest have a distinct geometrical structure. In this paper, we show that the high dimensional acoustic samples indeed lie on a low dimensional manifold and can be embedded into a low dimensional space. Motivated by this result, we propose a semi-supervised source localization algorithm which recovers the inverse mapping between the acoustic samples and their corresponding locations. The idea is to use an optimization framework based on manifold regularization, that involves smoothness constraints of possible solutions with respect to the manifold. The proposed algorithm, termed Manifold Regularization for Localization (MRL), is implemented in an adaptive manner. The initialization is conducted with only few labelled samples attached with their respective source locations, and then the system is gradually adapted as new unlabelled samples (with unknown source locations) are received. Experimental results show superior localization performance when compared with a recently presented algorithm based on a manifold learning approach and with the generalized cross-correlation (GCC) algorithm as a baseline

    Multiple source localization using spherical microphone arrays

    Get PDF
    Direction-of-Arrival (DOA) estimation is a fundamental task in acoustic signal processing and is used in source separation, localization, tracking, environment mapping, speech enhancement and dereverberation. In applications such as hearing aids, robot audition, teleconferencing and meeting diarization, the presence of multiple simultaneously active sources often occurs. Therefore DOA estimation which is robust to Multi-Source (MS) scenarios is of particular importance. In the past decade, interest in Spherical Microphone Arrays (SMAs) has been rapidly grown due to its ability to analyse the sound field with equal resolution in all directions. Such symmetry makes SMAs suitable for applications in robot audition where potential variety of heights and positions of the talkers are expected. Acoustic signal processing for SMAs is often formulated in the Spherical Harmonic Domain (SHD) which describes the sound field in a form that is independent of the geometry of the SMA. DOA estimation methods for the real-world scenarios address one or more performance degrading factors such as noise, reverberation, multi-source activity or tackled problems such as source counting or reducing computational complexity. This thesis addresses various problems in MS DOA estimation for speech sources each of which focuses on one or more performance degrading factor(s). Firstly a narrowband DOA estimator is proposed utilizing high order spatial information in two computationally efficient ways. Secondly, an autonomous source counting technique is proposed which uses density-based clustering in an evolutionary framework. Thirdly, a confidence metric for validity of Single Source (SS) assumption in a Time-Frequency (TF) bin is proposed. It is based on MS assumption in a short time interval where the number and the TF bin of active sources are adaptively estimated. Finally two analytical narrowband MS DOA estimators are proposed based on MS assumption in a TF bin. The proposed methods are evaluated using simulations and real recordings. Each proposed technique outperforms comparative baseline methods and performs at least as accurately as the state-of-the-art.Open Acces

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc
    corecore