32 research outputs found

    Estimation, Decision and Applications to Target Tracking

    Get PDF
    This dissertation mainly consists of three parts. The first part proposes generalized linear minimum mean-square error (GLMMSE) estimation for nonlinear point estimation. The second part proposes a recursive joint decision and estimation (RJDE) algorithm for joint decision and estimation (JDE). The third part analyzes the performance of sequential probability ratio test (SPRT) when the log-likelihood ratios (LLR) are independent but not identically distributed. The linear minimum mean-square error (LMMSE) estimation plays an important role in nonlinear estimation. It searches for the best estimator in the set of all estimators that are linear in the measurement. A GLMMSE estimation framework is proposed in this disser- tation. It employs a vector-valued measurement transform function (MTF) and finds the best estimator among all estimators that are linear in MTF. Several design guidelines for the MTF based on a numerical example were provided. A RJDE algorithm based on a generalized Bayes risk is proposed in this dissertation for dynamic JDE problems. It is computationally efficient for dynamic problems where data are made available sequentially. Further, since existing performance measures for estimation or decision are effective to evaluate JDE algorithms, a joint performance measure is proposed for JDE algorithms for dynamic problems. The RJDE algorithm is demonstrated by applications to joint tracking and classification as well as joint tracking and detection in target tracking. The characteristics and performance of SPRT are characterized by two important functions—operating characteristic (OC) and average sample number (ASN). These two functions have been studied extensively under the assumption of independent and identically distributed (i.i.d.) LLR, which is too stringent for many applications. This dissertation relaxes the requirement of identical distribution. Two inductive equations governing the OC and ASN are developed. Unfortunately, they have non-unique solutions in the general case. They do have unique solutions in two special cases: (a) the LLR sequence converges in distributions and (b) the LLR sequence has periodic distributions. Further, the analysis can be readily extended to evaluate the performance of the truncated SPRT and the cumulative sum test

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Multiple-Object Estimation Techniques for Challenging Scenarios

    Get PDF
    A series of methods for solving the multi-object estimation problem in the context sequential Bayesian inference is presented. These methods concentrate on dealing with challenging scenarios of multiple target tracking, involving fundamental problems of nonlinearity and non-Gaussianity of processes, high state dimensionality, high number of targets, statistical dependence between target states, and degenerate cases of low signal-to-noise ratio, high uncertainty, lowly observable states or uninformative observations. These difficulties pose obstacles to most practical multi-object inference problems, lying at the heart of the shortcomings reported for state-of-the-art methods, and so elicit novel treatments to enable tackling a broader class of real problems. The novel algorithms offered as solutions in this dissertation address such challenges by acting on the root causes of the associated problems. Often this involves essential dilemmas commonly manifested in Statistics and Decision Theory, such as trading off estimation accuracy with algorithm complexity, soft versus hard decision, generality versus tractability, conciseness versus interpretativeness etc. All proposed algorithms constitute stochastic filters, each of which is formulated to address specific aspects of the challenges at hand while offering tools to achieve judicious compromises in the aforementioned dilemmas. Two of the filters address the weight degeneracy observed in sequential Monte Carlo filters, particularly for nonlinear processes. One of these filters is designed for nonlinear non-Gaussian high-dimensional problems, delivering representativeness of the uncertainty in high-dimensional states while mitigating part of the inaccuracies that arise from the curse of dimensionality. This filter is shown to cope well with scenarios of multimodality, high state uncertainty, uninformative observations and high number of false alarms. A multi-object filter deals with the problem of considering dependencies between target states in a way that is scalable to a large number of targets, by resorting to probabilistic graphical structures. Another multi-object filter treats the problem of reducing the computational complexity of a state-of-the-art cardinalized filter to deal with a large number of targets, without compromising accuracy significantly. Finally, a framework for associating measurements across observation sessions for scenarios of low state observability is proposed, with application to an important Space Surveillance task: cataloging of space debris in the geosynchronous/geostationary belt. The devised methods treat the considered challenges by bringing about rather general questions, and provide not only principled solutions but also analyzes the essence of the investigated problems, extrapolating the implemented techniques to a wider spectrum of similar problems in Signal Processing

    Spatio-Temporal Awareness in Mobile Wireless Sensor Networks

    Get PDF

    Timbral Learning for Musical Robots

    Get PDF
    abstract: The tradition of building musical robots and automata is thousands of years old. Despite this rich history, even today musical robots do not play with as much nuance and subtlety as human musicians. In particular, most instruments allow the player to manipulate timbre while playing; if a violinist is told to sustain an E, they will select which string to play it on, how much bow pressure and velocity to use, whether to use the entire bow or only the portion near the tip or the frog, how close to the bridge or fingerboard to contact the string, whether or not to use a mute, and so forth. Each one of these choices affects the resulting timbre, and navigating this timbre space is part of the art of playing the instrument. Nonetheless, this type of timbral nuance has been largely ignored in the design of musical robots. Therefore, this dissertation introduces a suite of techniques that deal with timbral nuance in musical robots. Chapter 1 provides the motivating ideas and introduces Kiki, a robot designed by the author to explore timbral nuance. Chapter 2 provides a long history of musical robots, establishing the under-researched nature of timbral nuance. Chapter 3 is a comprehensive treatment of dynamic timbre production in percussion robots and, using Kiki as a case-study, provides a variety of techniques for designing striking mechanisms that produce a range of timbres similar to those produced by human players. Chapter 4 introduces a machine-learning algorithm for recognizing timbres, so that a robot can transcribe timbres played by a human during live performance. Chapter 5 introduces a technique that allows a robot to learn how to produce isolated instances of particular timbres by listening to a human play an examples of those timbres. The 6th and final chapter introduces a method that allows a robot to learn the musical context of different timbres; this is done in realtime during interactive improvisation between a human and robot, wherein the robot builds a statistical model of which timbres the human plays in which contexts, and uses this to inform its own playing.Dissertation/ThesisDoctoral Dissertation Media Arts and Sciences 201

    Colocated multiple-input multiple-output radars for smart mobility

    Get PDF
    In recent years, radars have been used in many applications such as precision agriculture and advanced driver assistant systems. Optimal techniques for the estimation of the number of targets and of their coordinates require solving multidimensional optimization problems entailing huge computational efforts. This has motivated the development of sub-optimal estimation techniques able to achieve good accuracy at a manageable computational cost. Another technical issue in advanced driver assistant systems is the tracking of multiple targets. Even if various filtering techniques have been developed, new efficient and robust algorithms for target tracking can be devised exploiting a probabilistic approach, based on the use of the factor graph and the sum-product algorithm. The two contributions provided by this dissertation are the investigation of the filtering and smoothing problems from a factor graph perspective and the development of efficient algorithms for two and three-dimensional radar imaging. Concerning the first contribution, a new factor graph for filtering is derived and the sum-product rule is applied to this graphical model; this allows to interpret known algorithms and to develop new filtering techniques. Then, a general method, based on graphical modelling, is proposed to derive filtering algorithms that involve a network of interconnected Bayesian filters. Finally, the proposed graphical approach is exploited to devise a new smoothing algorithm. Numerical results for dynamic systems evidence that our algorithms can achieve a better complexity-accuracy tradeoff and tracking capability than other techniques in the literature. Regarding radar imaging, various algorithms are developed for frequency modulated continuous wave radars; these algorithms rely on novel and efficient methods for the detection and estimation of multiple superimposed tones in noise. The accuracy achieved in the presence of multiple closely spaced targets is assessed on the basis of both synthetically generated data and of the measurements acquired through two commercial multiple-input multiple-output radars

    Robust on-line beat tracking with kalman filtering and probabilistic data association (KF-PDA)

    No full text

    Applications of Power Electronics:Volume 1

    Get PDF

    Libro de actas. XXXV Congreso Anual de la Sociedad Española de Ingeniería Biomédica

    Get PDF
    596 p.CASEIB2017 vuelve a ser el foro de referencia a nivel nacional para el intercambio científico de conocimiento, experiencias y promoción de la I D i en Ingeniería Biomédica. Un punto de encuentro de científicos, profesionales de la industria, ingenieros biomédicos y profesionales clínicos interesados en las últimas novedades en investigación, educación y aplicación industrial y clínica de la ingeniería biomédica. En la presente edición, más de 160 trabajos de alto nivel científico serán presentados en áreas relevantes de la ingeniería biomédica, tales como: procesado de señal e imagen, instrumentación biomédica, telemedicina, modelado de sistemas biomédicos, sistemas inteligentes y sensores, robótica, planificación y simulación quirúrgica, biofotónica y biomateriales. Cabe destacar las sesiones dedicadas a la competición por el Premio José María Ferrero Corral, y la sesión de competición de alumnos de Grado en Ingeniería biomédica, que persiguen fomentar la participación de jóvenes estudiantes e investigadores
    corecore