976 research outputs found

    Online learning and detection of faces with low human supervision

    Get PDF
    The final publication is available at link.springer.comWe present an efficient,online,and interactive approach for computing a classifier, called Wild Lady Ferns (WiLFs), for face learning and detection using small human supervision. More precisely, on the one hand, WiLFs combine online boosting and extremely randomized trees (Random Ferns) to compute progressively an efficient and discriminative classifier. On the other hand, WiLFs use an interactive human-machine approach that combines two complementary learning strategies to reduce considerably the degree of human supervision during learning. While the first strategy corresponds to query-by-boosting active learning, that requests human assistance over difficult samples in function of the classifier confidence, the second strategy refers to a memory-based learning which uses Âż Exemplar-based Nearest Neighbors (ÂżENN) to assist automatically the classifier. A pre-trained Convolutional Neural Network (CNN) is used to perform ÂżENN with high-level feature descriptors. The proposed approach is therefore fast (WilFs run in 1 FPS using a code not fully optimized), accurate (we obtain detection rates over 82% in complex datasets), and labor-saving (human assistance percentages of less than 20%). As a byproduct, we demonstrate that WiLFs also perform semi-automatic annotation during learning, as while the classifier is being computed, WiLFs are discovering faces instances in input images which are used subsequently for training online the classifier. The advantages of our approach are demonstrated in synthetic and publicly available databases, showing comparable detection rates as offline approaches that require larger amounts of handmade training data.Peer ReviewedPostprint (author's final draft

    Boosted Random ferns for object detection

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper we introduce the Boosted Random Ferns (BRFs) to rapidly build discriminative classifiers for learning and detecting object categories. At the core of our approach we use standard random ferns, but we introduce four main innovations that let us bring ferns from an instance to a category level, and still retain efficiency. First, we define binary features on the histogram of oriented gradients-domain (as opposed to intensity-), allowing for a better representation of intra-class variability. Second, both the positions where ferns are evaluated within the sliding window, and the location of the binary features for each fern are not chosen completely at random, but instead we use a boosting strategy to pick the most discriminative combination of them. This is further enhanced by our third contribution, that is to adapt the boosting strategy to enable sharing of binary features among different ferns, yielding high recognition rates at a low computational cost. And finally, we show that training can be performed online, for sequentially arriving images. Overall, the resulting classifier can be very efficiently trained, densely evaluated for all image locations in about 0.1 seconds, and provides detection rates similar to competing approaches that require expensive and significantly slower processing times. We demonstrate the effectiveness of our approach by thorough experimentation in publicly available datasets in which we compare against state-of-the-art, and for tasks of both 2D detection and 3D multi-view estimation.Peer ReviewedPostprint (author's final draft

    Vision-based retargeting for endoscopic navigation

    Get PDF
    Endoscopy is a standard procedure for visualising the human gastrointestinal tract. With the advances in biophotonics, imaging techniques such as narrow band imaging, confocal laser endomicroscopy, and optical coherence tomography can be combined with normal endoscopy for assisting the early diagnosis of diseases, such as cancer. In the past decade, optical biopsy has emerged to be an effective tool for tissue analysis, allowing in vivo and in situ assessment of pathological sites with real-time feature-enhanced microscopic images. However, the non-invasive nature of optical biopsy leads to an intra-examination retargeting problem, which is associated with the difficulty of re-localising a biopsied site consistently throughout the whole examination. In addition to intra-examination retargeting, retargeting of a pathological site is even more challenging across examinations, due to tissue deformation and changing tissue morphologies and appearances. The purpose of this thesis is to address both the intra- and inter-examination retargeting problems associated with optical biopsy. We propose a novel vision-based framework for intra-examination retargeting. The proposed framework is based on combining visual tracking and detection with online learning of the appearance of the biopsied site. Furthermore, a novel cascaded detection approach based on random forests and structured support vector machines is developed to achieve efficient retargeting. To cater for reliable inter-examination retargeting, the solution provided in this thesis is achieved by solving an image retrieval problem, for which an online scene association approach is proposed to summarise an endoscopic video collected in the first examination into distinctive scenes. A hashing-based approach is then used to learn the intrinsic representations of these scenes, such that retargeting can be achieved in subsequent examinations by retrieving the relevant images using the learnt representations. For performance evaluation of the proposed frameworks, extensive phantom, ex vivo and in vivo experiments have been conducted, with results demonstrating the robustness and potential clinical values of the methods proposed.Open Acces

    Fast Scene Recognition and Camera Relocalisation for Wide Area Augmented Reality Systems

    Get PDF
    This paper focuses on online scene learning and fast camera relocalisation which are two key problems currently limiting the performance of wide area augmented reality systems. Firstly, we propose to use adaptive random trees to deal with the online scene learning problem. The algorithm can provide more accurate recognition rates than traditional methods, especially with large scale workspaces. Secondly, we use the enhanced PROSAC algorithm to obtain a fast camera relocalisation method. Compared with traditional algorithms, our method can significantly reduce the computation complexity, which facilitates to a large degree the process of online camera relocalisation. Finally, we implement our algorithms in a multithreaded manner by using a parallel-computing scheme. Camera tracking, scene mapping, scene learning and relocalisation are separated into four threads by using multi-CPU hardware architecture. While providing real-time tracking performance, the resulting system also possesses the ability to track multiple maps simultaneously. Some experiments have been conducted to demonstrate the validity of our methods

    Multi-object Tracking in Aerial Image Sequences using Aerial Tracking Learning and Detection Algorithm

    Get PDF
    Vison based tracking in aerial images has its own significance in the areas of both civil and defense applications.  A novel algorithm called aerial tracking learning detection which works on the basis of the popular tracking learning detection algorithm to effectively track single and multiple objects in aerial images is proposed in this study. Tracking learning detection (TLD) considers both appearance and motion features for tracking. It can handle occlusion to certain extent, and can work well on long duration video sequences. However, when objects are tracked in aerial images taken from platforms like unmanned air vehicle, the problems of frequent pose change, scale and illumination variations arise adding to low resolution, noise and jitter introduced by motion of the camera.  The proposed algorithm incorporates compensation for the camera movement, algorithmic modifications in combining appearance and motion cues for detection and tracking of multiple objects and enhancements in the form of inter object distance measure for improved performance of the tracker when there are many identical objects in proximity. This algorithm has been tested on a large number of aerial sequences including benchmark videos, TLD dataset and many classified unmanned air vehicle sequences and has shown better performance in comparison to TLD.

    Face modeling for face recognition in the wild.

    Get PDF
    Face understanding is considered one of the most important topics in computer vision field since the face is a rich source of information in social interaction. Not only does the face provide information about the identity of people, but also of their membership in broad demographic categories (including sex, race, and age), and about their current emotional state. Facial landmarks extraction is the corner stone in the success of different facial analyses and understanding applications. In this dissertation, a novel facial modeling is designed for facial landmarks detection in unconstrained real life environment from different image modalities including infra-red and visible images. In the proposed facial landmarks detector, a part based model is incorporated with holistic face information. In the part based model, the face is modeled by the appearance of different face part(e.g., right eye, left eye, left eyebrow, nose, mouth) and their geometric relation. The appearance is described by a novel feature referred to as pixel difference feature. This representation is three times faster than the state-of-art in feature representation. On the other hand, to model the geometric relation between the face parts, the complex Bingham distribution is adapted from the statistical community into computer vision for modeling the geometric relationship between the facial elements. The global information is incorporated with the local part model using a regression model. The model results outperform the state-of-art in detecting facial landmarks. The proposed facial landmark detector is tested in two computer vision problems: boosting the performance of face detectors by rejecting pseudo faces and camera steering in multi-camera network. To highlight the applicability of the proposed model for different image modalities, it has been studied in two face understanding applications which are face recognition from visible images and physiological measurements for autistic individuals from thermal images. Recognizing identities from faces under different poses, expressions and lighting conditions from a complex background is an still unsolved problem even with accurate detection of landmark. Therefore, a learning similarity measure is proposed. The proposed measure responds only to the difference in identities and filter illuminations and pose variations. similarity measure makes use of statistical inference in the image plane. Additionally, the pose challenge is tackled by two new approaches: assigning different weights for different face part based on their visibility in image plane at different pose angles and synthesizing virtual facial images for each subject at different poses from single frontal image. The proposed framework is demonstrated to be competitive with top performing state-of-art methods which is evaluated on standard benchmarks in face recognition in the wild. The other framework for the face understanding application, which is a physiological measures for autistic individual from infra-red images. In this framework, accurate detecting and tracking Superficial Temporal Arteria (STA) while the subject is moving, playing, and interacting in social communication is a must. It is very challenging to track and detect STA since the appearance of the STA region changes over time and it is not discriminative enough from other areas in face region. A novel concept in detection, called supporter collaboration, is introduced. In support collaboration, the STA is detected and tracked with the help of face landmarks and geometric constraint. This research advanced the field of the emotion recognition
    • …
    corecore