503 research outputs found

    Incorporating Human Expertise in Robot Motion Learning and Synthesis

    Get PDF
    With the exponential growth of robotics and the fast development of their advanced cognitive and motor capabilities, one can start to envision humans and robots jointly working together in unstructured environments. Yet, for that to be possible, robots need to be programmed for such types of complex scenarios, which demands significant domain knowledge in robotics and control. One viable approach to enable robots to acquire skills in a more flexible and efficient way is by giving them the capabilities of autonomously learn from human demonstrations and expertise through interaction. Such framework helps to make the creation of skills in robots more social and less demanding on programing and robotics expertise. Yet, current imitation learning approaches suffer from significant limitations, mainly about the flexibility and efficiency for representing, learning and reasoning about motor tasks. This thesis addresses this problem by exploring cost-function-based approaches to learning robot motion control, perception and the interplay between them. To begin with, the thesis proposes an efficient probabilistic algorithm to learn an impedance controller to accommodate motion contacts. The learning algorithm is able to incorporate important domain constraints, e.g., about force representation and decomposition, which are nontrivial to handle by standard techniques. Compliant handwriting motions are developed on an articulated robot arm and a multi-fingered hand. This work provides a flexible approach to learn robot motion conforming to both task and domain constraints. Furthermore, the thesis also contributes with techniques to learn from and reason about demonstrations with partial observability. The proposed approach combines inverse optimal control and ensemble methods, yielding a tractable learning of cost functions with latent variables. Two task priors are further incorporated. The first human kinematics prior results in a model which synthesizes rich and believable dynamical handwriting. The latter prior enforces dynamics on the latent variable and facilitates a real-time human intention cognition and an on-line motion adaptation in collaborative robot tasks. Finally, the thesis establishes a link between control and perception modalities. This work offers an analysis that bridges inverse optimal control and deep generative model, as well as a novel algorithm that learns cost features and embeds the modal coupling prior. This work contributes an end-to-end system for synthesizing arm joint motion from letter image pixels. The results highlight its robustness against noisy and out-of-sample sensory inputs. Overall, the proposed approach endows robots the potential to reason about diverse unstructured data, which is nowadays pervasive but hard to process for current imitation learning

    Challenges and Remedies to Privacy and Security in AIGC: Exploring the Potential of Privacy Computing, Blockchain, and Beyond

    Full text link
    Artificial Intelligence Generated Content (AIGC) is one of the latest achievements in AI development. The content generated by related applications, such as text, images and audio, has sparked a heated discussion. Various derived AIGC applications are also gradually entering all walks of life, bringing unimaginable impact to people's daily lives. However, the rapid development of such generative tools has also raised concerns about privacy and security issues, and even copyright issues in AIGC. We note that advanced technologies such as blockchain and privacy computing can be combined with AIGC tools, but no work has yet been done to investigate their relevance and prospect in a systematic and detailed way. Therefore it is necessary to investigate how they can be used to protect the privacy and security of data in AIGC by fully exploring the aforementioned technologies. In this paper, we first systematically review the concept, classification and underlying technologies of AIGC. Then, we discuss the privacy and security challenges faced by AIGC from multiple perspectives and purposefully list the countermeasures that currently exist. We hope our survey will help researchers and industry to build a more secure and robust AIGC system.Comment: 43 pages, 10 figure

    Enhancing vehicle re-identification via synthetic training datasets and re-ranking based on video-clips information

    Full text link
    Vehicle re-identification (ReID) aims to find a specific vehicle identity across multiple non-overlapping cameras. The main challenge of this task is the large intra-class and small inter-class variability of vehicles appearance, sometimes related with large viewpoint variations, illumination changes or different camera resolutions. To tackle these problems, we proposed a vehicle ReID system based on ensembling deep learning features and adding different post-processing techniques. In this paper, we improve that proposal by: incorporating large-scale synthetic datasets in the training step; performing an exhaustive ablation study showing and analyzing the influence of synthetic content in ReID datasets, in particular CityFlow-ReID and VeRi-776; and extending post-processing by including different approaches to the use of gallery video-clips of the target vehicles in the re-ranking step. Additionally, we present an evaluation framework in order to evaluate CityFlow-ReID: as this dataset has not public ground truth annotations, AI City Challenge provided an on-line evaluation service which is no more available; our evaluation framework allows researchers to keep on evaluating the performance of their systems in the CityFlow-ReID datasetOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Natur
    • 

    corecore