2,901 research outputs found

    Task Space Approach of Robust Nonlinear Control for a 6 DOF Parallel Manipulator

    Get PDF

    PID control with gravity compensation for hydraulic 6-DOF parallel manipulator

    Get PDF
    Abstract A novel model-based controller for 6 degree-of-freedom (DOF) hydraulic driven parallel manipulator considering the nonlinear characteristic of hydraulic systems-proportional plus derivative with dynamic gravity compensation controller is presented, in order to improve control performance and eliminate steady state errors. In this paper, 6-DOF parallel manipulator is described as multi-rigid-body systems, the dynamic models including mechanical system and hydraulic driven system are built using Kane method and hydromechanics methodology, the numerical forward kinematics and inverse kinematics is solved with Newton-Raphson method and close-form solutions. The model-based controller is developed with feedback of actuator length, desired trajectories and system states acquired by forward kinematics solution as the input and servovalve current as its output. The hydraulic system is decoupled by local velocity compensation in inner control loop prerequisite for the controller. The performance revolving stability, accuracy and robustness of the proposed control scheme for 6-DOF parallel manipulator is analyzed in theory and simulation. The theoretical analysis and simulation results indicate the controller can improve the control performance and eliminate the steady state errors of 6-DOF hydraulic driven parallel manipulator

    Microgravity manipulator demonstration

    Get PDF
    A test rig is being developed that will be used to demonstrate and evaluate approaches to limiting manipulator base reactions in microgravity environments. The demonstration will include a 4-degrees-of-freedom arm, control computing facilities, and a base reaction measurement system

    Design of an adaptive controller for a telerobot manipulator

    Get PDF
    The design of a joint-space adaptive control scheme is presented for controlling the slave arm motion of a dual-arm telerobot system developed at Goddard Space Flight Center (GSFC) to study telerobotic operations in space. Each slave arm of the dual-arm system is a kinematically redundant manipulator with 7 degrees of freedom (DOF). Using the concept of model reference adaptive control (MRAC) and Lyapunov direct method, an adatation algorithm is derived which adjusts the PD controller gains of the control scheme. The development of the adaptive control scheme assumes that the slave arm motion is non-compliant and slowly-varying. The implementation of the derived control scheme does not need the computation of the manipulator dynamics, which makes the control scheme sufficiently fast for real-time applications. Computer simulation study performed for the 7-DOF slave arm shows that the developed control scheme can efficiently adapt to sudden change in payloads while tracking various test trajectories such as ramp or sinusoids with negligible position errors

    Controling interactions in motion control systems

    Get PDF
    Design of motion control systems should take into account (a) unconstrained motion performed without interaction with environment or other systems, (b) constrained motion performed by certain functional interaction with environment or other system. Control in both cases can be formulated in terms of maintaining desired system configuration what makes essentially the same structure for common tasks: trajectory tracking, interaction force control, compliance control etc. It will be shown that the same design approach can be used for systems that maintain some functional relations like parallel robots

    Design and Control Modeling of Novel Electro-magnets Driven Spherical Motion Generators

    Get PDF

    Fuzzy sliding mode control of a multi-DOF parallel robot in rehabilitation environment

    Get PDF
    Multi-degrees of freedom (DOF) parallel robot, due to its compact structure and high operation accuracy, is a promising candidate for medical rehabilitation devices. However, its controllability relating to the nonlinear characteristics challenges its interaction with human subjects during the rehabilitation process. In this paper, we investigated the control of a parallel robot system using fuzzy sliding mode control (FSMC) for constructing a simple controller in practical rehabilitation, where a fuzzy logic system was used as the additional compensator to the sliding mode controller (SMC) for performance enhancement and chattering elimination. The system stability is guaranteed by the Lyapunov stability theorem. Experiments were conducted on a lower limb rehabilitation robot, which was built based on kinematics and dynamics analysis of the 6-DOF Stewart platform. The experimental results showed that the position tracking precision of the proposed FSMC is sufficient in practical applications, while the velocity chattering had been effectively reduced in comparison with the conventional FSMC with parameters tuned by fuzzy systems
    corecore