7,207 research outputs found

    Modeling and Robust Attitude Controller Design for a Small Size Helicopter

    Full text link
    This paper addresses the design and application controller for a small-size unmanned aerial vehicle (UAV). In this work, the main objective is to study the modeling and attitude controller design for a small size helicopter. Based on a non-simplified helicopter model, a new robust attitude control law, which is combined with a nonlinear control method and a model-free method, is proposed in this paper. Both wind gust and ground effect phenomena conditions are involved in this experiment and the result on a real helicopter platform demonstrates the effectiveness of the proposed control algorithm and robustness of its resultant controller.Comment: 6 page

    Robust hovering control of a quad tilt-wing UAV

    Get PDF
    This paper presents design of a robust hovering controller for a quad tilt-wing UAV to hover at a desired position under external wind and aerodynamic disturbances. Wind and the aerodynamic disturbances are modeled using the Dryden model. In order to increase the robustness of the system, a disturbance observer is utilized to estimate the unknown disturbances acting on the system. Nonlinear terms which appear in the dynamics of the vehicle are also treated as disturbances and included in the total disturbance. Proper compensation of disturbances implies a linear model with nominal parameters. Thus, for robust hovering control, only PID type simple controllers have been employed and their performances have been found very satisfactory. Proposed hovering controller has been verified with several simulations and experiments

    The adaptive control system of quadrocopter motion

    Get PDF
    In this paper we present a system for automatic control of a quadrocopter based on the adaptive control system. The task is to ensure the motion of the quadrocopter along the given route and to control the stabilization of the quadrocopter in the air in a horizontal or in a given angular position by sending control signals to the engines. The nonlinear model of a quadrocopter is expressed in the form of a linear non-stationary system

    The adaptive control system of quadrocopter motion

    Get PDF
    In this paper we present a system for automatic control of a quadrocopter based on the adaptive control system. The task is to ensure the motion of the quadrocopter along the given route and to control the stabilization of the quadrocopter in the air in a horizontal or in a given angular position by sending control signals to the engines. The nonlinear model of a quadrocopter is expressed in the form of a linear non-stationary system
    corecore