16,381 research outputs found

    Robust Sparse Canonical Correlation Analysis

    Full text link
    Canonical correlation analysis (CCA) is a multivariate statistical method which describes the associations between two sets of variables. The objective is to find linear combinations of the variables in each data set having maximal correlation. This paper discusses a method for Robust Sparse CCA. Sparse estimation produces canonical vectors with some of their elements estimated as exactly zero. As such, their interpretability is improved. We also robustify the method such that it can cope with outliers in the data. To estimate the canonical vectors, we convert the CCA problem into an alternating regression framework, and use the sparse Least Trimmed Squares estimator. We illustrate the good performance of the Robust Sparse CCA method in several simulation studies and two real data examples

    Correntropy Maximization via ADMM - Application to Robust Hyperspectral Unmixing

    Full text link
    In hyperspectral images, some spectral bands suffer from low signal-to-noise ratio due to noisy acquisition and atmospheric effects, thus requiring robust techniques for the unmixing problem. This paper presents a robust supervised spectral unmixing approach for hyperspectral images. The robustness is achieved by writing the unmixing problem as the maximization of the correntropy criterion subject to the most commonly used constraints. Two unmixing problems are derived: the first problem considers the fully-constrained unmixing, with both the non-negativity and sum-to-one constraints, while the second one deals with the non-negativity and the sparsity-promoting of the abundances. The corresponding optimization problems are solved efficiently using an alternating direction method of multipliers (ADMM) approach. Experiments on synthetic and real hyperspectral images validate the performance of the proposed algorithms for different scenarios, demonstrating that the correntropy-based unmixing is robust to outlier bands.Comment: 23 page

    Robustness in sparse linear models: relative efficiency based on robust approximate message passing

    Full text link
    Understanding efficiency in high dimensional linear models is a longstanding problem of interest. Classical work with smaller dimensional problems dating back to Huber and Bickel has illustrated the benefits of efficient loss functions. When the number of parameters pp is of the same order as the sample size nn, p≈np \approx n, an efficiency pattern different from the one of Huber was recently established. In this work, we consider the effects of model selection on the estimation efficiency of penalized methods. In particular, we explore whether sparsity, results in new efficiency patterns when p>np > n. In the interest of deriving the asymptotic mean squared error for regularized M-estimators, we use the powerful framework of approximate message passing. We propose a novel, robust and sparse approximate message passing algorithm (RAMP), that is adaptive to the error distribution. Our algorithm includes many non-quadratic and non-differentiable loss functions. We derive its asymptotic mean squared error and show its convergence, while allowing p,n,s→∞p, n, s \to \infty, with n/p∈(0,1)n/p \in (0,1) and n/s∈(1,∞)n/s \in (1,\infty). We identify new patterns of relative efficiency regarding a number of penalized MM estimators, when pp is much larger than nn. We show that the classical information bound is no longer reachable, even for light--tailed error distributions. We show that the penalized least absolute deviation estimator dominates the penalized least square estimator, in cases of heavy--tailed distributions. We observe this pattern for all choices of the number of non-zero parameters ss, both s≤ns \leq n and s≈ns \approx n. In non-penalized problems where s=p≈ns =p \approx n, the opposite regime holds. Therefore, we discover that the presence of model selection significantly changes the efficiency patterns.Comment: 49 pages, 10 figure

    Sparse and Non-Negative BSS for Noisy Data

    Full text link
    Non-negative blind source separation (BSS) has raised interest in various fields of research, as testified by the wide literature on the topic of non-negative matrix factorization (NMF). In this context, it is fundamental that the sources to be estimated present some diversity in order to be efficiently retrieved. Sparsity is known to enhance such contrast between the sources while producing very robust approaches, especially to noise. In this paper we introduce a new algorithm in order to tackle the blind separation of non-negative sparse sources from noisy measurements. We first show that sparsity and non-negativity constraints have to be carefully applied on the sought-after solution. In fact, improperly constrained solutions are unlikely to be stable and are therefore sub-optimal. The proposed algorithm, named nGMCA (non-negative Generalized Morphological Component Analysis), makes use of proximal calculus techniques to provide properly constrained solutions. The performance of nGMCA compared to other state-of-the-art algorithms is demonstrated by numerical experiments encompassing a wide variety of settings, with negligible parameter tuning. In particular, nGMCA is shown to provide robustness to noise and performs well on synthetic mixtures of real NMR spectra.Comment: 13 pages, 18 figures, to be published in IEEE Transactions on Signal Processin

    Rectified Gaussian Scale Mixtures and the Sparse Non-Negative Least Squares Problem

    Full text link
    In this paper, we develop a Bayesian evidence maximization framework to solve the sparse non-negative least squares (S-NNLS) problem. We introduce a family of probability densities referred to as the Rectified Gaussian Scale Mixture (R- GSM) to model the sparsity enforcing prior distribution for the solution. The R-GSM prior encompasses a variety of heavy-tailed densities such as the rectified Laplacian and rectified Student- t distributions with a proper choice of the mixing density. We utilize the hierarchical representation induced by the R-GSM prior and develop an evidence maximization framework based on the Expectation-Maximization (EM) algorithm. Using the EM based method, we estimate the hyper-parameters and obtain a point estimate for the solution. We refer to the proposed method as rectified sparse Bayesian learning (R-SBL). We provide four R- SBL variants that offer a range of options for computational complexity and the quality of the E-step computation. These methods include the Markov chain Monte Carlo EM, linear minimum mean-square-error estimation, approximate message passing and a diagonal approximation. Using numerical experiments, we show that the proposed R-SBL method outperforms existing S-NNLS solvers in terms of both signal and support recovery performance, and is also very robust against the structure of the design matrix.Comment: Under Review by IEEE Transactions on Signal Processin
    • …
    corecore