2,670 research outputs found

    Computational Multiscale Methods

    Get PDF
    Many physical processes in material sciences or geophysics are characterized by inherently complex interactions across a large range of non-separable scales in space and time. The resolution of all features on all scales in a computer simulation easily exceeds today's computing resources by multiple orders of magnitude. The observation and prediction of physical phenomena from multiscale models, hence, requires insightful numerical multiscale techniques to adaptively select relevant scales and effectively represent unresolved scales. This workshop enhanced the development of such methods and the mathematics behind them so that the reliable and efficient numerical simulation of some challenging multiscale problems eventually becomes feasible in high performance computing environments

    Multiscale and High-Dimensional Problems

    Get PDF
    High-dimensional problems appear naturally in various scientific areas. Two primary examples are PDEs describing complex processes in computational chemistry and physics, and stochastic/ parameter-dependent PDEs arising in uncertainty quantification and optimal control. Other highly visible examples are big data analysis including regression and classification which typically encounters high-dimensional data as input and/or output. High dimensional problems cannot be solved by traditional numerical techniques, because of the so-called curse of dimensionality. Rather, they require the development of novel theoretical and computational approaches to make them tractable and to capture fine resolutions and relevant features. Paradoxically, increasing computational power may even serve to heighten this demand, since the wealth of new computational data itself becomes a major obstruction. Extracting essential information from complex structures and developing rigorous models to quantify the quality of information in a high dimensional setting constitute challenging tasks from both theoretical and numerical perspective. The last decade has seen the emergence of several new computational methodologies which address the obstacles to solving high dimensional problems. These include adaptive methods based on mesh refinement or sparsity, random forests, model reduction, compressed sensing, sparse grid and hyperbolic wavelet approximations, and various new tensor structures. Their common features are the nonlinearity of the solution method that prioritize variables and separate solution characteristics living on different scales. These methods have already drastically advanced the frontiers of computability for certain problem classes. This workshop proposed to deepen the understanding of the underlying mathematical concepts that drive this new evolution of computational methods and to promote the exchange of ideas emerging in various disciplines about how to treat multiscale and high-dimensional problems

    Data-Driven Time-Frequency Analysis

    Get PDF
    In this paper, we introduce a new adaptive data analysis method to study trend and instantaneous frequency of nonlinear and non-stationary data. This method is inspired by the Empirical Mode Decomposition method (EMD) and the recently developed compressed (compressive) sensing theory. The main idea is to look for the sparsest representation of multiscale data within the largest possible dictionary consisting of intrinsic mode functions of the form {a(t)cos(θ(t))}\{a(t) \cos(\theta(t))\}, where aV(θ)a \in V(\theta), V(θ)V(\theta) consists of the functions smoother than cos(θ(t))\cos(\theta(t)) and θ0\theta'\ge 0. This problem can be formulated as a nonlinear L0L^0 optimization problem. In order to solve this optimization problem, we propose a nonlinear matching pursuit method by generalizing the classical matching pursuit for the L0L^0 optimization problem. One important advantage of this nonlinear matching pursuit method is it can be implemented very efficiently and is very stable to noise. Further, we provide a convergence analysis of our nonlinear matching pursuit method under certain scale separation assumptions. Extensive numerical examples will be given to demonstrate the robustness of our method and comparison will be made with the EMD/EEMD method. We also apply our method to study data without scale separation, data with intra-wave frequency modulation, and data with incomplete or under-sampled data
    corecore