729 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Path Following Control of Automated Vehicle Considering Uncertainties and Disturbances with Parametric Varying

    Full text link
    Automated Vehicle Path Following Control (PFC) is an advanced control system that can regulate the vehicle into a collision-free region in the presence of other objects on the road. Common collision avoidance functions, such as forward collision warning and automatic emergency braking, have recently been developed and equipped on production vehicles. However, it is impossible to develop a perfectly precise vehicle model when the vehicle is driving. Most PFCs did not consider uncertainties in the vehicle model, external disturbances, and parameter variations at the same time. To address the issues associated with this important feature and function in autonomous driving, a new vehicle PFC is proposed using a robust model predictive control (MPC) design technique based on matrix inequality and the theoretical approach of the hybrid &\& switched system. The proposed methodology requires a combination of continuous and discrete states, e.g. regulating the continuous states of the AV (e.g., velocity and yaw angle) and discrete switching of the control strategy that affects the dynamic behaviors of the AV under different driving speeds. Firstly, considering bounded model uncertainties, and norm-bounded external disturbances, the system states and control matrices are modified

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Robust nonlinear control of vectored thrust aircraft

    Get PDF
    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations

    Modelling, Optimisation and Explicit Model Predictive Control of Anaesthesia Drug Delivery Systems

    Get PDF
    The contributions of this thesis are organised in two parts. Part I presents a mathematical model for drug distribution and drug effect of volatile anaesthesia. Part II presents model predictive control strategies for depth of anaesthesia control based on the derived model. Closed-loop model predictive control strategies for anaesthesia are aiming to improve patient's safety and to fine-tune drug delivery, routinely performed by the anaesthetist. The framework presented in this thesis highlights the advantages of extensive modelling and model analysis, which are contributing to a detailed understanding of the system, when aiming for the optimal control of such system. As part of the presented framework, the model uncertainty originated from patient-variability is analysed and the designed control strategy is tested against the identified uncertainty. An individualised physiologically based model of drug distribution and uptake, pharmacokinetics, and drug effect, pharmacodynamics, of volatile anaesthesia is presented, where the pharmacokinetic model is adjusted to the weight, height, gender and age of the patient. The pharmacodynamic model links the hypnotic depth measured by the Bispectral index (BIS), to the arterial concentration by an artificial effect site compartment and the Hill equation. The individualised pharmacokinetic and pharmacodynamic variables and parameters are analysed with respect to their influence on the measurable outputs, the end-tidal concentration and the BIS. The validation of the model, performed with clinical data for isoflurane and desflurane based anaesthesia, shows a good prediction of the drug uptake, while the pharmacodynamic parameters are individually estimated for each patient. The derived control design consists of a linear multi-parametric model predictive controller and a state estimator. The non-measurable tissue and blood concentrations are estimated based on the end-tidal concentration of the volatile anaesthetic. The designed controller adapts to the individual patient's dynamics based on measured data. In an alternative approach, the individual patient's sensitivity is estimated on-line by solving a least squares parameter estimation problem.Open Acces

    Predictive LPV control of a liquid-gas separation process

    Full text link
    [EN] The problem of controlling a liquid-gas separation process is approached by using LPV control techniques. An LPV model is derived from a nonlinear model of the process using differential inclusion techniques. Once an LPV model is available, an LPV controller can be synthesized. The authors present a predictive LPV controller based on the GPC controller [Clarke D, Mohtadi C, Tuffs P. Generalized predictive control - Part I. Automatica 1987;23(2):137-48; Clarke D, Mohtadi C, Tuffs P. Generalized predictive control - Part II. Extensions and interpretations. Automatica 1987;23(2):149-60]. The resulting controller is denoted as GPC-LPV. This one shows the same structure as a general LPV controller [El Gahoui L, Scorletti G. Control of rational systems using linear-fractional representations and linear matrix inequalities. Automatica 1996;32(9):1273-84; Scorletti G, El Ghaoui L. Improved LMI conditions for gain scheduling and related control problems. International Journal of Robust Nonlinear Control 1998;8:845-77; Apkarian P, Tuan HD. Parametrized LMIs in control theory. In: Proceedings of the 37th IEEE conference on decision and control; 1998. p. 152-7; Scherer CW. LPV control and full block multipliers. Automatica 2001;37:361-75], which presents a linear fractional dependence on the process signal measurements. Therefore, this controller has the ability of modifying its dynamics depending on measurements leading to a possibly nonlinear controller. That controller is designed in two steps. First, for a given steady state point is obtained a linear GPC using a linear local model of the nonlinear system around that operating point. And second, using bilinear and linear matrix inequalities (BMIs/LMIs) the remaining matrices of GPC-LPV are selected in order to achieve some closed loop properties: stability in some operation zone, norm bounding of some input/output channels, maximum settling time, maximum overshoot, etc., given some LPV model for the nonlinear system. As an application, a GPC-LPV is designed for the derived LPV model of the liquid-gas separation process. This methodology can be applied to any nonlinear system which can be embedded in an LPV system using differential inclusion techniques. (C) 2006 Elsevier Ltd. All rights reserved.Partially supported by projects: CICYT DPI2004-08383-C03-02 and DPI2005-07835.Salcedo-Romero-De-Ávila, J.; Martínez Iranzo, MA.; Ramos Fernández, C.; Herrero Durá, JM. (2007). Predictive LPV control of a liquid-gas separation process. Advances in Engineering Software. 38(7):466-474. https://doi.org/10.1016/j.advengsoft.2006.10.003S46647438
    corecore