1,329 research outputs found

    Transductive Learning with String Kernels for Cross-Domain Text Classification

    Full text link
    For many text classification tasks, there is a major problem posed by the lack of labeled data in a target domain. Although classifiers for a target domain can be trained on labeled text data from a related source domain, the accuracy of such classifiers is usually lower in the cross-domain setting. Recently, string kernels have obtained state-of-the-art results in various text classification tasks such as native language identification or automatic essay scoring. Moreover, classifiers based on string kernels have been found to be robust to the distribution gap between different domains. In this paper, we formally describe an algorithm composed of two simple yet effective transductive learning approaches to further improve the results of string kernels in cross-domain settings. By adapting string kernels to the test set without using the ground-truth test labels, we report significantly better accuracy rates in cross-domain English polarity classification.Comment: Accepted at ICONIP 2018. arXiv admin note: substantial text overlap with arXiv:1808.0840

    Hypergraph Learning with Line Expansion

    Full text link
    Previous hypergraph expansions are solely carried out on either vertex level or hyperedge level, thereby missing the symmetric nature of data co-occurrence, and resulting in information loss. To address the problem, this paper treats vertices and hyperedges equally and proposes a new hypergraph formulation named the \emph{line expansion (LE)} for hypergraphs learning. The new expansion bijectively induces a homogeneous structure from the hypergraph by treating vertex-hyperedge pairs as "line nodes". By reducing the hypergraph to a simple graph, the proposed \emph{line expansion} makes existing graph learning algorithms compatible with the higher-order structure and has been proven as a unifying framework for various hypergraph expansions. We evaluate the proposed line expansion on five hypergraph datasets, the results show that our method beats SOTA baselines by a significant margin

    Semi-supervised Embedding in Attributed Networks with Outliers

    Full text link
    In this paper, we propose a novel framework, called Semi-supervised Embedding in Attributed Networks with Outliers (SEANO), to learn a low-dimensional vector representation that systematically captures the topological proximity, attribute affinity and label similarity of vertices in a partially labeled attributed network (PLAN). Our method is designed to work in both transductive and inductive settings while explicitly alleviating noise effects from outliers. Experimental results on various datasets drawn from the web, text and image domains demonstrate the advantages of SEANO over state-of-the-art methods in semi-supervised classification under transductive as well as inductive settings. We also show that a subset of parameters in SEANO is interpretable as outlier score and can significantly outperform baseline methods when applied for detecting network outliers. Finally, we present the use of SEANO in a challenging real-world setting -- flood mapping of satellite images and show that it is able to outperform modern remote sensing algorithms for this task.Comment: in Proceedings of SIAM International Conference on Data Mining (SDM'18
    corecore