26 research outputs found

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    Solar System Small-Body Demographics with the Palomar Transient Factory Survey

    Get PDF
    Observational studies of our solar system's small-body populations (asteroids and comets) offer insight into the history of our planetary system, as these minor planets represent the left-over building blocks from its formation. The Palomar Transient Factory (PTF) survey began in 2009 as the latest wide-field sky-survey program to be conducted on the 1.2-meter Samuel Oschin telescope at Palomar Observatory. Though its main science program has been the discovery of high-energy extragalactic sources (such as supernovae), during its first five years PTF has collected nearly five million observations of over half a million unique solar system small bodies. This thesis begins to analyze this vast data set to address key population-level science topics, including: the detection rates of rare main-belt comets and small near-Earth asteroids, the spin and shape properties of asteroids as inferred from their lightcurves, the applicability of this visible light data to the interpretation of ultraviolet asteroid observations, and a comparison of the physical properties of main-belt and Jovian Trojan asteroids. Future sky-surveys would benefit from application of the analytical techniques presented herein, which include novel modeling methods and unique applications of machine-learning classification. The PTF asteroid small-body data produced in the course of this thesis work should remain a fertile source of solar system science and discovery for years to come

    Multisensory learning in adaptive interactive systems

    Get PDF
    The main purpose of my work is to investigate multisensory perceptual learning and sensory integration in the design and development of adaptive user interfaces for educational purposes. To this aim, starting from renewed understanding from neuroscience and cognitive science on multisensory perceptual learning and sensory integration, I developed a theoretical computational model for designing multimodal learning technologies that take into account these results. Main theoretical foundations of my research are multisensory perceptual learning theories and the research on sensory processing and integration, embodied cognition theories, computational models of non-verbal and emotion communication in full-body movement, and human-computer interaction models. Finally, a computational model was applied in two case studies, based on two EU ICT-H2020 Projects, "weDRAW" and "TELMI", on which I worked during the PhD

    Proceedings of the Fourth International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Biological Shape Variability Modeling (MFCA 2013), Nagoya, Japan

    Get PDF
    International audienceComputational anatomy is an emerging discipline at the interface of geometry, statistics and image analysis which aims at modeling and analyzing the biological shape of tissues and organs. The goal is to estimate representative organ anatomies across diseases, populations, species or ages, to model the organ development across time (growth or aging), to establish their variability, and to correlate this variability information with other functional, genetic or structural information. The Mathematical Foundations of Computational Anatomy (MFCA) workshop aims at fostering the interactions between the mathematical community around shapes and the MICCAI community in view of computational anatomy applications. It targets more particularly researchers investigating the combination of statistical and geometrical aspects in the modeling of the variability of biological shapes. The workshop is a forum for the exchange of the theoretical ideas and aims at being a source of inspiration for new methodological developments in computational anatomy. A special emphasis is put on theoretical developments, applications and results being welcomed as illustrations. Following the first edition of this workshop in 2006, second edition in New-York in 2008, the third edition in Toronto in 2011, the forth edition was held in Nagoya Japan on September 22 2013

    Parallel Hierarchies: Interactive Visualization of Multidimensional Hierarchical Aggregates

    Get PDF
    Exploring multi-dimensional hierarchical data is a long-standing problem present in a wide range of fields such as bioinformatics, software systems, social sciences and business intelligence. While each hierarchical dimension within these data structures can be explored in isolation, critical information lies in the relationships between dimensions. Existing approaches can either simultaneously visualize multiple non-hierarchical dimensions, or only one or two hierarchical dimensions. Yet, the challenge of visualizing multi-dimensional hierarchical data remains open. To address this problem, we developed a novel data visualization approach -- Parallel Hierarchies -- that we demonstrate on a real-life SAP SE product called SAP Product Lifecycle Costing. The starting point of the research is a thorough customer-driven requirement engineering phase including an iterative design process. To avoid restricting ourselves to a domain-specific solution, we abstract the data and tasks gathered from users, and demonstrate the approach generality by applying Parallel Hierarchies to datasets from bioinformatics and social sciences. Moreover, we report on a qualitative user study conducted in an industrial scenario with 15 experts from 9 different companies. As a result of this co-innovation experience, several SAP customers requested a product feature out of our solution. Moreover, Parallel Hierarchies integration as a standard diagram type into SAP Analytics Cloud platform is in progress. This thesis further introduces different uncertainty representation methods applicable to Parallel Hierarchies and in general to flow diagrams. We also present a visual comparison taxonomy for time-series of hierarchically structured data with one or multiple dimensions. Moreover, we propose several visual solutions for comparing hierarchies employing flow diagrams. Finally, after presenting two application examples of Parallel Hierarchies on industrial datasets, we detail two validation methods to examine the effectiveness of the visualization solution. Particularly, we introduce a novel design validation table to assess the perceptual aspects of eight different visualization solutions including Parallel Hierarchies.:1 Introduction 1.1 Motivation and Problem Statement 1.2 Research Goals 1.3 Outline and Contributions 2 Foundations of Visualization 2.1 Information Visualization 2.1.1 Terms and Definition 2.1.2 What: Data Structures 2.1.3 Why: Visualization Tasks 2.1.4 How: Visualization Techniques 2.1.5 How: Interaction Techniques 2.2 Visual Perception 2.2.1 Visual Variables 2.2.2 Attributes of Preattentive and Attentive Processing 2.2.3 Gestalt Principles 2.3 Flow Diagrams 2.3.1 Classifications of Flow Diagrams 2.3.2 Main Visual Features 2.4 Summary 3 Related Work 3.1 Cross-tabulating Hierarchical Categories 3.1.1 Visualizing Categorical Aggregates of Item Sets 3.1.2 Hierarchical Visualization of Categorical Aggregates 3.1.3 Visualizing Item Sets and Their Hierarchical Properties 3.1.4 Hierarchical Visualization of Categorical Set Aggregates 3.2 Uncertainty Visualization 3.2.1 Uncertainty Taxonomies 3.2.2 Uncertainty in Flow Diagrams 3.3 Time-Series Data Visualization 3.3.1 Time & Data 3.3.2 User Tasks 3.3.3 Visual Representation 3.4 Summary ii Contents 4 Requirement Engineering Phase 4.1 Introduction 4.2 Environment 4.2.1 The Product 4.2.2 The Customers and Development Methodology 4.2.3 Lessons Learned 4.3 Visualization Requirements for Product Costing 4.3.1 Current Visualization Practice 4.3.2 Visualization Tasks 4.3.3 Data Structure and Size 4.3.4 Early Visualization Prototypes 4.3.5 Challenges and Lessons Learned 4.4 Data and Task Abstraction 4.4.1 Data Abstraction 4.4.2 Task Abstraction 4.5 Summary and Outlook 5 Parallel Hierarchies 5.1 Introduction 5.2 The Parallel Hierarchies Technique 5.2.1 The Individual Axis: Showing Hierarchical Categories 5.2.2 Two Interlinked Axes: Showing Pairwise Frequencies 5.2.3 Multiple Linked Axes: Propagating Frequencies 5.2.4 Fine-tuning Parallel Hierarchies through Reordering 5.3 Design Choices 5.4 Applying Parallel Hierarchies 5.4.1 US Census Data 5.4.2 Yeast Gene Ontology Annotations 5.5 Evaluation 5.5.1 Setup of the Evaluation 5.5.2 Procedure of the Evaluation 5.5.3 Results from the Evaluation 5.5.4 Validity of the Evaluation 5.6 Summary and Outlook 6 Visualizing Uncertainty in Flow Diagrams 6.1 Introduction 6.2 Uncertainty in Product Costing 6.2.1 Background 6.2.2 Main Causes of Bad Quality in Costing Data 6.3 Visualization Concepts 6.4 Uncertainty Visualization using Ribbons 6.4.1 Selected Visualization Techniques 6.4.2 Study Design and Procedure 6.4.3 Results 6.4.4 Discussion 6.5 Revised Visualization Approach using Ribbons 6.5.1 Application to Sankey Diagram 6.5.2 Application to Parallel Sets 6.5.3 Application to Parallel Hierarchies 6.6 Uncertainty Visualization using Nodes 6.6.1 Visual Design of Nodes 6.6.2 Expert Evaluation 6.7 Summary and Outlook 7 Visual Comparison Task 7.1 Introduction 7.2 Comparing Two One-dimensional Time Steps 7.2.1 Problem Statement 7.2.2 Visualization Design 7.3 Comparing Two N-dimensional Time Steps 7.4 Comparing Several One-dimensional Time Steps 7.5 Summary and Outlook 8 Parallel Hierarchies in Practice 8.1 Application to Plausibility Check Task 8.1.1 Plausibility Check Process 8.1.2 Visual Exploration of Machine Learning Results 8.2 Integration into SAP Analytics Cloud 8.2.1 SAP Analytics Cloud 8.2.2 Ocean to Table Project 8.3 Summary and Outlook 9 Validation 9.1 Introduction 9.2 Nested Model Validation Approach 9.3 Perceptual Validation of Visualization Techniques 9.3.1 Design Validation Table 9.3.2 Discussion 9.4 Summary and Outlook 10 Conclusion and Outlook 10.1 Summary of Findings 10.2 Discussion 10.3 Outlook A Questionnaires of the Evaluation B Survey of the Quality of Product Costing Data C Questionnaire of Current Practice Bibliograph
    corecore