12,551 research outputs found

    Robust Moment Closure Method for the Chemical Master Equation

    Full text link
    The Chemical Master Equation (CME) is used to stochastically model biochemical reaction networks, under the Markovian assumption. The low-order statistical moments induced by the CME are often the key quantities that one is interested in. However, in most cases, the moments equation is not closed; in the sense that the first nn moments depend on the higher order moments, for any positive integer nn. In this paper, we develop a moment closure technique in which the higher order moments are approximated by an affine function of the lower order moments. We refer to such functions as the affine Moment Closure Functions (MCF) and prove that they are optimal in the worst-case context, in which no a priori information on the probability distribution is available. Furthermore, we cast the problem of finding the optimal affine MCF as a linear program, which is tractable. We utilize the affine MCFs to derive a finite dimensional linear system that approximates the low-order moments. We quantify the approximation error in terms of the % l_{\infty } induced norm of some linear system. Our results can be effectively used to approximate the low-order moments and characterize the noise properties of the biochemical network under study

    Stochastic focusing coupled with negative feedback enables robust regulation in biochemical reaction networks

    Full text link
    Nature presents multiple intriguing examples of processes which proceed at high precision and regularity. This remarkable stability is frequently counter to modelers' experience with the inherent stochasticity of chemical reactions in the regime of low copy numbers. Moreover, the effects of noise and nonlinearities can lead to "counter-intuitive" behavior, as demonstrated for a basic enzymatic reaction scheme that can display stochastic focusing (SF). Under the assumption of rapid signal fluctuations, SF has been shown to convert a graded response into a threshold mechanism, thus attenuating the detrimental effects of signal noise. However, when the rapid fluctuation assumption is violated, this gain in sensitivity is generally obtained at the cost of very large product variance, and this unpredictable behavior may be one possible explanation of why, more than a decade after its introduction, SF has still not been observed in real biochemical systems. In this work we explore the noise properties of a simple enzymatic reaction mechanism with a small and fluctuating number of active enzymes that behaves as a high-gain, noisy amplifier due to SF caused by slow enzyme fluctuations. We then show that the inclusion of a plausible negative feedback mechanism turns the system from a noisy signal detector to a strong homeostatic mechanism by exchanging high gain with strong attenuation in output noise and robustness to parameter variations. Moreover, we observe that the discrepancy between deterministic and stochastic descriptions of stochastically focused systems in the evolution of the means almost completely disappears, despite very low molecule counts and the additional nonlinearity due to feedback. The reaction mechanism considered here can provide a possible resolution to the apparent conflict between intrinsic noise and high precision in critical intracellular processes

    Markovian Dynamics on Complex Reaction Networks

    Full text link
    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underling population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions, the computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.Comment: 52 pages, 11 figures, for freely available MATLAB software, see http://www.cis.jhu.edu/~goutsias/CSS%20lab/software.htm

    Model reduction for stochastic CaMKII reaction kinetics in synapses by graph-constrained correlation dynamics.

    Get PDF
    A stochastic reaction network model of Ca(2+) dynamics in synapses (Pepke et al PLoS Comput. Biol. 6 e1000675) is expressed and simulated using rule-based reaction modeling notation in dynamical grammars and in MCell. The model tracks the response of calmodulin and CaMKII to calcium influx in synapses. Data from numerically intensive simulations is used to train a reduced model that, out of sample, correctly predicts the evolution of interaction parameters characterizing the instantaneous probability distribution over molecular states in the much larger fine-scale models. The novel model reduction method, 'graph-constrained correlation dynamics', requires a graph of plausible state variables and interactions as input. It parametrically optimizes a set of constant coefficients appearing in differential equations governing the time-varying interaction parameters that determine all correlations between variables in the reduced model at any time slice

    The auxiliary region method: A hybrid method for coupling PDE- and Brownian-based dynamics for reaction-diffusion systems

    Get PDF
    Reaction-diffusion systems are used to represent many biological and physical phenomena. They model the random motion of particles (diffusion) and interactions between them (reactions). Such systems can be modelled at multiple scales with varying degrees of accuracy and computational efficiency. When representing genuinely multiscale phenomena, fine-scale models can be prohibitively expensive, whereas coarser models, although cheaper, often lack sufficient detail to accurately represent the phenomenon at hand. Spatial hybrid methods couple two or more of these representations in order to improve efficiency without compromising accuracy. In this paper, we present a novel spatial hybrid method, which we call the auxiliary region method (ARM), which couples PDE and Brownian-based representations of reaction-diffusion systems. Numerical PDE solutions on one side of an interface are coupled to Brownian-based dynamics on the other side using compartment-based "auxiliary regions". We demonstrate that the hybrid method is able to simulate reaction-diffusion dynamics for a number of different test problems with high accuracy. Further, we undertake error analysis on the ARM which demonstrates that it is robust to changes in the free parameters in the model, where previous coupling algorithms are not. In particular, we envisage that the method will be applicable for a wide range of spatial multi-scales problems including, filopodial dynamics, intracellular signalling, embryogenesis and travelling wave phenomena.Comment: 29 pages, 14 figures, 2 table

    Circular Stochastic Fluctuations in SIS Epidemics with Heterogeneous Contacts Among Sub-populations

    Full text link
    The conceptual difference between equilibrium and non-equilibrium steady state (NESS) is well established in physics and chemistry. This distinction, however, is not widely appreciated in dynamical descriptions of biological populations in terms of differential equations in which fixed point, steady state, and equilibrium are all synonymous. We study NESS in a stochastic SIS (susceptible-infectious-susceptible) system with heterogeneous individuals in their contact behavior represented in terms of subgroups. In the infinite population limit, the stochastic dynamics yields a system of deterministic evolution equations for population densities; and for very large but finite system a diffusion process is obtained. We report the emergence of a circular dynamics in the diffusion process, with an intrinsic frequency, near the endemic steady state. The endemic steady state is represented by a stable node in the deterministic dynamics; As a NESS phenomenon, the circular motion is caused by the intrinsic heterogeneity within the subgroups, leading to a broken symmetry and time irreversibility.Comment: 29 pages, 5 figure

    Moment Closure - A Brief Review

    Full text link
    Moment closure methods appear in myriad scientific disciplines in the modelling of complex systems. The goal is to achieve a closed form of a large, usually even infinite, set of coupled differential (or difference) equations. Each equation describes the evolution of one "moment", a suitable coarse-grained quantity computable from the full state space. If the system is too large for analytical and/or numerical methods, then one aims to reduce it by finding a moment closure relation expressing "higher-order moments" in terms of "lower-order moments". In this brief review, we focus on highlighting how moment closure methods occur in different contexts. We also conjecture via a geometric explanation why it has been difficult to rigorously justify many moment closure approximations although they work very well in practice.Comment: short survey paper (max 20 pages) for a broad audience in mathematics, physics, chemistry and quantitative biolog

    Uncoupled Analysis of Stochastic Reaction Networks in Fluctuating Environments

    Full text link
    The dynamics of stochastic reaction networks within cells are inevitably modulated by factors considered extrinsic to the network such as for instance the fluctuations in ribsome copy numbers for a gene regulatory network. While several recent studies demonstrate the importance of accounting for such extrinsic components, the resulting models are typically hard to analyze. In this work we develop a general mathematical framework that allows to uncouple the network from its dynamic environment by incorporating only the environment's effect onto the network into a new model. More technically, we show how such fluctuating extrinsic components (e.g., chemical species) can be marginalized in order to obtain this decoupled model. We derive its corresponding process- and master equations and show how stochastic simulations can be performed. Using several case studies, we demonstrate the significance of the approach. For instance, we exemplarily formulate and solve a marginal master equation describing the protein translation and degradation in a fluctuating environment.Comment: 7 pages, 4 figures, Appendix attached as SI.pdf, under submissio
    corecore