8,108 research outputs found

    A scenario approach for non-convex control design

    Full text link
    Randomized optimization is an established tool for control design with modulated robustness. While for uncertain convex programs there exist randomized approaches with efficient sampling, this is not the case for non-convex problems. Approaches based on statistical learning theory are applicable to non-convex problems, but they usually are conservative in terms of performance and require high sample complexity to achieve the desired probabilistic guarantees. In this paper, we derive a novel scenario approach for a wide class of random non-convex programs, with a sample complexity similar to that of uncertain convex programs and with probabilistic guarantees that hold not only for the optimal solution of the scenario program, but for all feasible solutions inside a set of a-priori chosen complexity. We also address measure-theoretic issues for uncertain convex and non-convex programs. Among the family of non-convex control- design problems that can be addressed via randomization, we apply our scenario approach to randomized Model Predictive Control for chance-constrained nonlinear control-affine systems.Comment: Submitted to IEEE Transactions on Automatic Contro

    Distributed Random Convex Programming via Constraints Consensus

    Full text link
    This paper discusses distributed approaches for the solution of random convex programs (RCP). RCPs are convex optimization problems with a (usually large) number N of randomly extracted constraints; they arise in several applicative areas, especially in the context of decision under uncertainty, see [2],[3]. We here consider a setup in which instances of the random constraints (the scenario) are not held by a single centralized processing unit, but are distributed among different nodes of a network. Each node "sees" only a small subset of the constraints, and may communicate with neighbors. The objective is to make all nodes converge to the same solution as the centralized RCP problem. To this end, we develop two distributed algorithms that are variants of the constraints consensus algorithm [4],[5]: the active constraints consensus (ACC) algorithm, and the vertex constraints consensus (VCC) algorithm. We show that the ACC algorithm computes the overall optimal solution in finite time, and with almost surely bounded communication at each iteration. The VCC algorithm is instead tailored for the special case in which the constraint functions are convex also w.r.t. the uncertain parameters, and it computes the solution in a number of iterations bounded by the diameter of the communication graph. We further devise a variant of the VCC algorithm, namely quantized vertex constraints consensus (qVCC), to cope with the case in which communication bandwidth among processors is bounded. We discuss several applications of the proposed distributed techniques, including estimation, classification, and random model predictive control, and we present a numerical analysis of the performance of the proposed methods. As a complementary numerical result, we show that the parallel computation of the scenario solution using ACC algorithm significantly outperforms its centralized equivalent

    On the Sample Size of Random Convex Programs with Structured Dependence on the Uncertainty (Extended Version)

    Full text link
    The "scenario approach" provides an intuitive method to address chance constrained problems arising in control design for uncertain systems. It addresses these problems by replacing the chance constraint with a finite number of sampled constraints (scenarios). The sample size critically depends on Helly's dimension, a quantity always upper bounded by the number of decision variables. However, this standard bound can lead to computationally expensive programs whose solutions are conservative in terms of cost and violation probability. We derive improved bounds of Helly's dimension for problems where the chance constraint has certain structural properties. The improved bounds lower the number of scenarios required for these problems, leading both to improved objective value and reduced computational complexity. Our results are generally applicable to Randomized Model Predictive Control of chance constrained linear systems with additive uncertainty and affine disturbance feedback. The efficacy of the proposed bound is demonstrated on an inventory management example.Comment: Accepted for publication at Automatic
    • …
    corecore