20,266 research outputs found

    Optimal Regulation of Blood Glucose Level in Type I Diabetes using Insulin and Glucagon

    Full text link
    The Glucose-Insulin-Glucagon nonlinear model [1-4] accurately describes how the body responds to exogenously supplied insulin and glucagon in patients affected by Type I diabetes. Based on this model, we design infusion rates of either insulin (monotherapy) or insulin and glucagon (dual therapy) that can optimally maintain the blood glucose level within desired limits after consumption of a meal and prevent the onset of both hypoglycemia and hyperglycemia. This problem is formulated as a nonlinear optimal control problem, which we solve using the numerical optimal control package PSOPT. Interestingly, in the case of monotherapy, we find the optimal solution is close to the standard method of insulin based glucose regulation, which is to assume a variable amount of insulin half an hour before each meal. We also find that the optimal dual therapy (that uses both insulin and glucagon) is better able to regulate glucose as compared to using insulin alone. We also propose an ad-hoc rule for both the dosage and the time of delivery of insulin and glucagon.Comment: Accepted for publication in PLOS ON

    Depth of anesthesia control using internal model control techniques

    Get PDF
    The major difficulty in the design of closed-loop control during anaesthesia is the inherent patient variability due to differences in demographic and drug tolerance. These discrepancies are translated into the pharmacokinetics (PK), and pharmacodynamics (PD). These uncertainties may affect the stability of the closed loop control system. This paper aims at developing predictive controllers using Internal Model Control technique. This study develops patient dose-response models and to provide an adequate drug administration regimen for the anaesthesia to avoid under or over dosing of the patients. The controllers are designed to compensate for patients inherent drug response variability, to achieve the best output disturbance rejection, and to maintain optimal set point response. The results are evaluated compared with traditional PID controller and the performance is confirmed in our simulation

    Stabilising Model Predictive Control for Discrete-time Fractional-order Systems

    Full text link
    In this paper we propose a model predictive control scheme for constrained fractional-order discrete-time systems. We prove that all constraints are satisfied at all time instants and we prescribe conditions for the origin to be an asymptotically stable equilibrium point of the controlled system. We employ a finite-dimensional approximation of the original infinite-dimensional dynamics for which the approximation error can become arbitrarily small. We use the approximate dynamics to design a tube-based model predictive controller which steers the system state to a neighbourhood of the origin of controlled size. We finally derive stability conditions for the MPC-controlled system which are computationally tractable and account for the infinite dimensional nature of the fractional-order system and the state and input constraints. The proposed control methodology guarantees asymptotic stability of the discrete-time fractional order system, satisfaction of the prescribed constraints and recursive feasibility
    • …
    corecore