71 research outputs found

    Non-Fragile Guaranteed Cost Control of Nonlinear Systems with Different State and Input Delays Based on T-S Fuzzy Local Bilinear Models

    Get PDF
    This paper focuses on the non-fragile guaranteed cost control problem for a class of Takagi-Sugeno (T-S) fuzzy time-varying delay systems with local bilinear models and different state and input delays. A non-fragile guaranteed cost state-feedback controller is designed such that the closed-loop T-S fuzzy local bilinear control system is delay-dependent asymptotically stable, and the closed-loop fuzzy system performance is constrained to a certain upper bound when the additive controller gain perturbations exist. By employing the linear matrix inequality (LMI) technique, sufficient conditions are established for the existence of desired non-fragile guaranteed cost controllers. The simulation examples show that the proposed approach is effective and feasible

    generalized multiple delay-dependent H∞, functional observer design for nonlinear system

    Get PDF
    Producción CientíficaFunctional observers are the major alternative to many practical estimation problems where full-order observers cannot be used. This paper introduces a generalized approach to design H∞ functional observers for a class of Lipschitz nonlinear systems with multiple time delays. Moreover, the considered system extends from previously published work in that it presents nonlinearity, multiple delay and external disturbance. Their main findings come from the development of a generalized augmented Lyapunov function that uses both the extended reciprocal convex combination and the Wirtinger inequality. The stability of the observer is therefore guaranteed by an LMI optimization problem. Finally, the steps of the design procedure were condensed and proffered for the two numerical examples to test the recommended design approach

    Adaptive Robust Control of Biomass Fuel Co-Combustion Process

    Get PDF
    The share of biomass in energy production is constantly growing. This is caused by environmental and industry standards and EU guidelines. Biomass is used in the process of co-firing in large power plants and industrial installations. In the existing power stations, biomass is milled and burned simultaneously with coal. However, low-emission combustion techniques, including biomass co-combustion, have some negative side effects that can be split into two categories. The direct effects influence the process control stability, whereas the indirect ones on combustion installations via increased corrosion or boiler slagging. The effects can be minimised using additional information about the process. The proper combustion diagnosis as well as an appropriate, robust control system ought to be applied. The chapter is devoted to the analysis of modern, robust control techniques for complex power engineering applications

    Networked systems with incomplete information

    Get PDF
    Copyright © 2015 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In this special issue, we have solicited submissions from electrical engineers, control engineers, computer scientists, and mathematicians. After a rigorous peer review process, 18 papers have been selected that provide overviews, solutions, or early promises, to manage, analyse, and interpret dynamical behaviours of networked systems. These papers have covered both the theoretical and practical aspects of networked system with incomplete information in the broad areas of dynamical systems, mathematics, statistics, operational research, and engineering

    Finite-time reliable nonfragile control for fractionalorder nonlinear systems with asymmetrical saturation and structured uncertainties

    Get PDF
    This paper investigates the finite-time stabilization problem of fractional-order nonlinear differential systems via an asymmetrically saturated reliable control in the sense of Caputo’s fractional derivative. In particular, an asymmetrical saturation control problem is converted to a symmetrical saturation control problem by using a linear matrix inequality framework criterion to achieve the essential results. Specifically, in this paper, we obtain two sets of sufficient conditions under different scenarios of structured uncertainty, namely, norm-bounded parametric uncertainty and linear fractional transformation uncertainty. The uncertainty considered in this paper is a combination of polytopic form and structured form. With the help of control theories of fractional-order system and linear matrix inequality technique, some sufficient criteria to ensure reliable finite-time stability of fractional-order differential systems by using the indirect Lyapunov approach are derived. As a final point, the derived criteria are numerically validated by means of examples based on financial fractional-order differential system and permanent magnet synchronous motor chaotic fractional-order differential system

    Advances in gain-scheduling and fault tolerant control techniques

    Get PDF
    This thesis presents some contributions to the state-of-the-art of the fields of gain-scheduling and fault tolerant control (FTC). In the area of gain-scheduling, the connections between the linear parameter varying (LPV) and Takagi-Sugeno (TS) paradigms are analyzed, showing that the methods for the automated generation of models by nonlinear embedding and by sector nonlinearity, developed for one class of systems, can be easily extended to deal with the other class. Then, two measures, based on the notions of overboundedness and region of attraction estimates, are proposed in order to compare different models and choose which one can be considered the best one. Later, the problem of designing state-feedback controllers for LPV systems has been considered, providing two main contributions. First, robust LPV controllers that can guarantee some desired performances when applied to uncertain LPV systems are designed, by using a double-layer polytopic description that takes into account both the variability due to the varying parameter vector and the uncertainty. Then, the idea of designing the controller in such a way that the required performances are scheduled by the varying parameters is explored, which provides an elegant way to vary online the behavior of the closed-loop system. In both cases, the problem reduces to finding a solution to a finite number of linear matrix inequalities (LMIs), which can be done efficiently using the available solvers. In the area of fault tolerant control, the thesis first shows that the aforementioned double-layer polytopic framework can be used for FTC, in such a way that different strategies (passive, active and hybrid) are obtained depending on the amount of available information. Later, an FTC strategy for LPV systems that involves a reconfigured reference model and virtual actuators is developed. It is shown that by including the saturations in the reference model equations, it is possible to design a model reference FTC system that automatically retunes the reference states whenever the system is affected by saturation nonlinearities. In this way, a graceful performance degradation in presence of actuator saturations is incorporated in an elegant way. Finally, the problem of FTC of unstable LPV systems subject to actuator saturations is considered. In this case, the design of the virtual actuator is performed in such a way that the convergence of the state trajectory to zero is assured despite the saturations and the appearance of faults. Also, it is shown that it is possible to obtain some guarantees about the tolerated delay between the fault occurrence and its isolation, and that the nominal controller can be designed so as to maximize the tolerated delay.Aquesta tesi presenta diverses contribucions a l'estat de l'art del control per planificació del guany i del control tolerant a fallades (FTC). Pel que fa al control per planificació del guany, s'analitzen les connexions entre els paradigmes dels sistemes lineals a paràmetres variants en el temps (LPV) i de Takagi-Sugeno (TS). Es demostra que els mètodes per a la generació automàtica de models mitjançant encastament no lineal i mitjançant no linealitat sectorial, desenvolupats per una classe de sistemes, es poden estendre fàcilment per fer-los servir amb l'altra classe. Es proposen dues mesures basades en les nocions de sobrefitació i d'estimació de la regió d'atracció, per tal de comparar diferents models i triar quin d'ells pot ser considerat el millor. Després, es considera el problema de dissenyar controladors per realimentació d'estat per a sistemes LPV, proporcionant dues contribucions principals. En primer lloc, fent servir una descripció amb doble capa politòpica que té en compte tant la variabilitat deguda al vector de paràmetres variants i la deguda a la incertesa, es dissenyen controladors LPV robustos que puguin garantir unes especificacions desitjades quan s'apliquen a sistemes LPV incerts. En segon lloc, s'explora la idea de dissenyar el controlador de tal manera que les especificacions requerides siguin programades pels paràmetres variants. Això proporciona una manera elegant de variar en línia el comportament del sistema en llaç tancat. En tots dos casos, el problema es redueix a trobar una solució d'un nombre finit de desigualtats matricials lineals (LMIs), que es poden resoldre fent servir algorismes numèrics disponibles i molt eficients. En l'àrea del control tolerant a fallades, primerament la tesi mostra que la descripció amb doble capa politòpica abans esmentada es pot utilitzar per fer FTC, de tal manera que, en funció de la quantitat d'informació disponible, s'obtenen diferents estratègies (passiva, activa i híbrida). Després, es desenvolupa una estratègia de FTC per a sistemes LPV que fa servir un model de referència reconfigurat combinat amb la tècnica d'actuadors virtuals. Es mostra que mitjançant la inclusió de les saturacions en les equacions del model de referència, és possible dissenyar un sistema de control tolerant a fallades que resintonitza automàticament els estats de referència cada vegada que el sistema es veu afectat per les no linealitats de la saturació en els actuadors. D'aquesta manera s'incorpora una degradació elegant de les especificacions en presència de saturacions d'actuadors. Finalment, es considera el problema de FTC per sistemes LPV inestables afectats per saturacions d'actuadors. En aquest cas, es porta a terme el disseny de l'actuador virtual de tal manera que la convergència a zero de la trajectòria d'estat està assegurada tot i les saturacions i l'aparició de fallades. A més, es mostra que és possible obtenir garanties sobre el retard tolerat entre l'aparició d'una fallada i el seu aïllament, i que el controlador nominal es pot dissenyar maximitzant el retard tolerat

    Advanced Kalman Filter-based Backstepping Control of AC Microgrids: A Command Filter Approach

    Get PDF

    Performance improvement of professional printing systems : from theory to practice

    Get PDF
    Performance Improvement of Professional Printing Systems: from theory to practice Markets demand continuously for higher quality, higher speed, and more energy-efficient professional printers. In this thesis, control strategies have been developed to improve the performance of both professional inkjet and laser printers. Drop-on-Demand (DoD) inkjet printing is considered as one of the most promising printing technologies. It offers several advantages including high speed, quiet operation, and compatibility with a variety of printing media. Nowadays, it has been used as low-cost and efficient manufacturing technology in a wide variety of markets. Although the performance requirements, which are imposed by the current applications, are tight, the future performance requirements are expected to be even more challenging. Several requirements are related to the jetted drop properties, namely, drop velocity, drop volume, drop velocity consistency, productivity, and reliability. Meeting the performance requirements is restricted by several operational issues that are associated with the design and operation of inkjet printheads. Major issues that are usually encountered are residual vibrations in and crosstalk among ink channels. This results in a poor printing quality for high-speed printing. Given any arbitrary bitmap, the main objective is to design actuation pulses such that variations in the velocity and volume of the jetted drops are minimized. Several model-based feedfoward control techniques using an existing model are implemented to generate appropriate input pulses for the printhead. Although the implementation of the model-based techniques shows a considerable improvement of the printhead performance compared with the current performance, further improvements are still necessary. We observe that besides the pulse shape the state of the ink surface at the nozzle plate (speed, position) at the start of the pulse influences the drop velocity considerably. This state at firing depends also on previous pixels in the bitmap of the image. Consequently, any pulse design has to guarantee almost the same initial state when firing a drop. Based on these facts, a model-free optimization scheme is developed to minimize the drop velocity variations taking into account the bitmap information. Experimental results show the effectiveness of the optimized pulses. Laser printing systems are highly depending on the appropriate combination of several design factors so as to become functional in a desired working range. The physical printing process involves multiple temperature set points at different places, precise electro-magnetic conditions, transfer of toner through certain pressures and layouts, and many other technical considerations. In the laser printing system there are several challenging issues and unknown disturbances. They originate from different sources, such as the printer itself (unknown phenomena appear, disturbances that are not foreseen, wear, contamination, failures, bugs), the environment of the system (power supply variations, temperature, humidity, vibrations), and the printing media (weight, coating, thermal properties, humidity characteristics, and initial temperature). These issues have a negative effect on the stability and performance of the laser printing system. The objective is to design a control scheme to achieve printing quality requirements and a high productivity. Good printing quality means that the fusing temperature should track a certain reference signal at different operating conditions. Based on the printing system behavior, we propose two different control schemes to cope with the large parameter variations and disturbances, namely, a Model Reference Adaptive Controller (MRAC) and a nonlinear (scheduled) observer-based output feedback control scheme. Both control techniques yield considerable performance improvements compared with the present industrial controller
    corecore