3,906 research outputs found

    Quantum Algorithm of Imperfect KB Self-organization Pt I: Smart Control-Information-Thermodynamic Bounds

    Get PDF
    The quantum self-organization algorithm model of wise knowledge base design for intelligent fuzzy controllers with required robust level considered. Background of the model is a new model of quantum inference based on quantum genetic algorithm. Quantum genetic algorithm applied on line for the quantum correlation’s type searching between unknown solutions in quantum superposition of imperfect knowledge bases of intelligent controllers designed on soft computing. Disturbance conditions of analytical information-thermodynamic trade-off interrelations between main control quality measures (as new design laws) discussed in Part I. The smart control design with guaranteed achievement of these tradeoff interrelations is main goal for quantum self-organization algorithm of imperfect KB. Sophisticated synergetic quantum information effect in Part I (autonomous robot in unpredicted control situations) and II (swarm robots with imperfect KB exchanging between “master - slaves”) introduced: a new robust smart controller on line designed from responses on unpredicted control situations of any imperfect KB applying quantum hidden information extracted from quantum correlation. Within the toolkit of classical intelligent control, the achievement of the similar synergetic information effect is impossible. Benchmarks of intelligent cognitive robotic control applications considered

    Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems

    Get PDF
    Learning-based control algorithms require data collection with abundant supervision for training. Safe exploration algorithms ensure the safety of this data collection process even when only partial knowledge is available. We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained stochastic optimal control with dynamics learning and feedback control. We derive an iterative convex optimization algorithm that solves an \underline{Info}rmation-cost \underline{S}tochastic \underline{N}onlinear \underline{O}ptimal \underline{C}ontrol problem (Info-SNOC). The optimization objective encodes both optimal performance and exploration for learning, and the safety is incorporated as distributionally robust chance constraints. The dynamics are predicted from a robust regression model that is learned from data. The Info-SNOC algorithm is used to compute a sub-optimal pool of safe motion plans that aid in exploration for learning unknown residual dynamics under safety constraints. A stable feedback controller is used to execute the motion plan and collect data for model learning. We prove the safety of rollout from our exploration method and reduction in uncertainty over epochs, thereby guaranteeing the consistency of our learning method. We validate the effectiveness of Info-SNOC by designing and implementing a pool of safe trajectories for a planar robot. We demonstrate that our approach has higher success rate in ensuring safety when compared to a deterministic trajectory optimization approach.Comment: Submitted to RA-L 2020, review-

    Modeling, Analysis, and Optimization Issues for Large Space Structures

    Get PDF
    Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design

    Composite Disturbance Filtering: A Novel State Estimation Scheme for Systems With Multi-Source, Heterogeneous, and Isomeric Disturbances

    Full text link
    State estimation has long been a fundamental problem in signal processing and control areas. The main challenge is to design filters with ability to reject or attenuate various disturbances. With the arrival of big data era, the disturbances of complicated systems are physically multi-source, mathematically heterogenous, affecting the system dynamics via isomeric (additive, multiplicative and recessive) channels, and deeply coupled with each other. In traditional filtering schemes, the multi-source heterogenous disturbances are usually simplified as a lumped one so that the "single" disturbance can be either rejected or attenuated. Since the pioneering work in 2012, a novel state estimation methodology called {\it composite disturbance filtering} (CDF) has been proposed, which deals with the multi-source, heterogenous, and isomeric disturbances based on their specific characteristics. With the CDF, enhanced anti-disturbance capability can be achieved via refined quantification, effective separation, and simultaneous rejection and attenuation of the disturbances. In this paper, an overview of the CDF scheme is provided, which includes the basic principle, general design procedure, application scenarios (e.g. alignment, localization and navigation), and future research directions. In summary, it is expected that the CDF offers an effective tool for state estimation, especially in the presence of multi-source heterogeneous disturbances

    Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond

    Get PDF
    Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov–Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed ‘Gaussian conjugacy’ in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity

    Intelligent robust control of redundant smart robotic arm Pt I: Soft computing KB optimizer - deep machine learning IT

    Get PDF
    Redundant robotic arm models as a control object discussed. Background of computational intelligence IT based on soft computing optimizer of knowledge base in smart robotic manipulators introduced. Soft computing optimizer is the toolkit of deep machine learning SW platform with optimal fuzzy neural network structure. The methods for development and design technology of intelligent control systems based on the soft computing optimizer presented in this Part 1 allow one to implement the principle of design an optimal intelligent control systems with a maximum reliability and controllability level of a complex control object under conditions of uncertainty in the source data, and in the presence of stochastic noises of various physical and statistical characters. The knowledge bases formed with the application of a soft computing optimizer produce robust control laws for the schedule of time dependent coefficient gains of conventional PID controllers for a wide range of external perturbations and are maximally insensitive to random variations of the structure of control object. The robustness of control laws is achieved by application a vector fitness function for genetic algorithm, whose one component describes the physical principle of minimum production of generalized entropy both in the control object and the control system, and the other components describe conventional control objective functionals such as minimum control error, etc. The application of soft computing technologies (Part I) for the development a robust intelligent control system that solving the problem of precision positioning redundant (3DOF and 7 DOF) manipulators considered. Application of quantum soft computing in robust intelligent control of smart manipulators in Part II described

    Intelligent flight control systems

    Get PDF
    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms
    corecore