51,718 research outputs found

    Robust maximum weighted independent-set problems on interval graphs.

    Get PDF
    We study the maximum weighted independent-set problem on interval graphs with uncertainty on the vertex weights. We use the absolute robustness criterion and the min-max regret criterion to evaluate solutions. For a discrete scenario set, we find that the problem is NP-hard for each of the robustness criteria; we also provide pseudo-polynomial time algorithms when there is a constant number of scenarios and show that the problem is strongly NP-hard when the set of scenarios is unbounded. When the scenario set is a Cartesian product, we prove that the problem is equivalent to a maximum weighted independent-set problem on the same interval graph but without uncertainty for the first objective function and that the scenario set can be reduced for the second objective function.Combinatorial problems; Computational complexity; Interval graphs; Independent set;

    Complexity of the robust weighted independent set problems on interval graphs

    Full text link
    This paper deals with the max-min and min-max regret versions of the maximum weighted independent set problem on interval graphswith uncertain vertex weights. Both problems have been recently investigated by Nobibon and Leus (2014), who showed that they are NP-hard for two scenarios and strongly NP-hard if the number of scenarios is a part of the input. In this paper, new complexity and approximation results on the problems under consideration are provided, which extend the ones previously obtained. Namely, for the discrete scenario uncertainty representation it is proven that if the number of scenarios KK is a part of the input, then the max-min version of the problem is not at all approximable. On the other hand, its min-max regret version is approximable within KK and not approximable within O(log1ϵK)O(\log^{1-\epsilon}K) for any ϵ>0\epsilon>0 unless the problems in NP have quasi polynomial algorithms. Furthermore, for the interval uncertainty representation it is shown that the min-max regret version is NP-hard and approximable within 2

    Large induced subgraphs via triangulations and CMSO

    Full text link
    We obtain an algorithmic meta-theorem for the following optimization problem. Let \phi\ be a Counting Monadic Second Order Logic (CMSO) formula and t be an integer. For a given graph G, the task is to maximize |X| subject to the following: there is a set of vertices F of G, containing X, such that the subgraph G[F] induced by F is of treewidth at most t, and structure (G[F],X) models \phi. Some special cases of this optimization problem are the following generic examples. Each of these cases contains various problems as a special subcase: 1) "Maximum induced subgraph with at most l copies of cycles of length 0 modulo m", where for fixed nonnegative integers m and l, the task is to find a maximum induced subgraph of a given graph with at most l vertex-disjoint cycles of length 0 modulo m. 2) "Minimum \Gamma-deletion", where for a fixed finite set of graphs \Gamma\ containing a planar graph, the task is to find a maximum induced subgraph of a given graph containing no graph from \Gamma\ as a minor. 3) "Independent \Pi-packing", where for a fixed finite set of connected graphs \Pi, the task is to find an induced subgraph G[F] of a given graph G with the maximum number of connected components, such that each connected component of G[F] is isomorphic to some graph from \Pi. We give an algorithm solving the optimization problem on an n-vertex graph G in time O(#pmc n^{t+4} f(t,\phi)), where #pmc is the number of all potential maximal cliques in G and f is a function depending of t and \phi\ only. We also show how a similar running time can be obtained for the weighted version of the problem. Pipelined with known bounds on the number of potential maximal cliques, we deduce that our optimization problem can be solved in time O(1.7347^n) for arbitrary graphs, and in polynomial time for graph classes with polynomial number of minimal separators

    Robust Inference of Trees

    Full text link
    This paper is concerned with the reliable inference of optimal tree-approximations to the dependency structure of an unknown distribution generating data. The traditional approach to the problem measures the dependency strength between random variables by the index called mutual information. In this paper reliability is achieved by Walley's imprecise Dirichlet model, which generalizes Bayesian learning with Dirichlet priors. Adopting the imprecise Dirichlet model results in posterior interval expectation for mutual information, and in a set of plausible trees consistent with the data. Reliable inference about the actual tree is achieved by focusing on the substructure common to all the plausible trees. We develop an exact algorithm that infers the substructure in time O(m^4), m being the number of random variables. The new algorithm is applied to a set of data sampled from a known distribution. The method is shown to reliably infer edges of the actual tree even when the data are very scarce, unlike the traditional approach. Finally, we provide lower and upper credibility limits for mutual information under the imprecise Dirichlet model. These enable the previous developments to be extended to a full inferential method for trees.Comment: 26 pages, 7 figure

    A Variant of the Maximum Weight Independent Set Problem

    Full text link
    We study a natural extension of the Maximum Weight Independent Set Problem (MWIS), one of the most studied optimization problems in Graph algorithms. We are given a graph G=(V,E)G=(V,E), a weight function w:VR+w: V \rightarrow \mathbb{R^+}, a budget function b:VZ+b: V \rightarrow \mathbb{Z^+}, and a positive integer BB. The weight (resp. budget) of a subset of vertices is the sum of weights (resp. budgets) of the vertices in the subset. A kk-budgeted independent set in GG is a subset of vertices, such that no pair of vertices in that subset are adjacent, and the budget of the subset is at most kk. The goal is to find a BB-budgeted independent set in GG such that its weight is maximum among all the BB-budgeted independent sets in GG. We refer to this problem as MWBIS. Being a generalization of MWIS, MWBIS also has several applications in Scheduling, Wireless networks and so on. Due to the hardness results implied from MWIS, we study the MWBIS problem in several special classes of graphs. We design exact algorithms for trees, forests, cycle graphs, and interval graphs. In unweighted case we design an approximation algorithm for d+1d+1-claw free graphs whose approximation ratio (dd) is competitive with the approximation ratio (d2\frac{d}{2}) of MWIS (unweighted). Furthermore, we extend Baker's technique \cite{Baker83} to get a PTAS for MWBIS in planar graphs.Comment: 18 page

    Laplacian Mixture Modeling for Network Analysis and Unsupervised Learning on Graphs

    Full text link
    Laplacian mixture models identify overlapping regions of influence in unlabeled graph and network data in a scalable and computationally efficient way, yielding useful low-dimensional representations. By combining Laplacian eigenspace and finite mixture modeling methods, they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a variety of input data types, including mixture distributions, feature vectors, and graphs or networks. Provable optimal recovery using the algorithm is analytically shown for a nontrivial class of cluster graphs. Heuristic approximations for scalable high-performance implementations are described and empirically tested. Connections to PageRank and community detection in network analysis demonstrate the wide applicability of this approach. The origins of fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics, are reviewed and summarized. Comparisons to other dimensionality reduction and clustering methods for challenging unsupervised machine learning problems are also discussed.Comment: 13 figures, 35 reference
    corecore