3,243 research outputs found

    Lower bounds for constant query affine-invariant LCCs and LTCs

    Get PDF
    Affine-invariant codes are codes whose coordinates form a vector space over a finite field and which are invariant under affine transformations of the coordinate space. They form a natural, well-studied class of codes; they include popular codes such as Reed-Muller and Reed-Solomon. A particularly appealing feature of affine-invariant codes is that they seem well-suited to admit local correctors and testers. In this work, we give lower bounds on the length of locally correctable and locally testable affine-invariant codes with constant query complexity. We show that if a code CΣKn\mathcal{C} \subset \Sigma^{\mathbb{K}^n} is an rr-query locally correctable code (LCC), where K\mathbb{K} is a finite field and Σ\Sigma is a finite alphabet, then the number of codewords in C\mathcal{C} is at most exp(OK,r,Σ(nr1))\exp(O_{\mathbb{K}, r, |\Sigma|}(n^{r-1})). Also, we show that if CΣKn\mathcal{C} \subset \Sigma^{\mathbb{K}^n} is an rr-query locally testable code (LTC), then the number of codewords in C\mathcal{C} is at most exp(OK,r,Σ(nr2))\exp(O_{\mathbb{K}, r, |\Sigma|}(n^{r-2})). The dependence on nn in these bounds is tight for constant-query LCCs/LTCs, since Guo, Kopparty and Sudan (ITCS `13) construct affine-invariant codes via lifting that have the same asymptotic tradeoffs. Note that our result holds for non-linear codes, whereas previously, Ben-Sasson and Sudan (RANDOM `11) assumed linearity to derive similar results. Our analysis uses higher-order Fourier analysis. In particular, we show that the codewords corresponding to an affine-invariant LCC/LTC must be far from each other with respect to Gowers norm of an appropriate order. This then allows us to bound the number of codewords, using known decomposition theorems which approximate any bounded function in terms of a finite number of low-degree non-classical polynomials, upto a small error in the Gowers norm

    Is Unemployment Good for the Environment?

    Get PDF
    Environmental quality is a public good, potentially impacted by everybody. Individual level pro-environmental behavior affects environmental quality in the aggregate. Therefore, it is important to understand what causes individual’s pro-environmental behaviors to change. We quantify the causal effect of one determinant, unemployment, using an EU-27 population representative Eurobarometer survey. Drawing on results from the theory of the private provision of public goods, and recognizing that unemployment decreases income and the opportunity cost of time, we formulate testable predictions that unemployment will decrease the extent of pro-environmental behaviors that require monetary contributions and increase the extent of pro-environmental behaviors that mainly require time/effort. Instrumental variables regressions provide empirical evidence to support these hypotheses. Changes in the unemployment rate within a sub-national region provide the exogenous variation needed to identify the causal effect. Several supplemental questions on the survey provide evidence that environmental issues lose saliency and economic issues gain saliency when one becomes unemployed, suggesting that interested parties may wish to emphasize cost savings of pro-environmental behavior rather than environmental benefits during times of increased unemployment

    Local Testing for Membership in Lattices

    Get PDF
    Motivated by the structural analogies between point lattices and linear error-correcting codes, and by the mature theory on locally testable codes, we initiate a systematic study of local testing for membership in lattices. Testing membership in lattices is also motivated in practice, by applications to integer programming, error detection in lattice-based communication, and cryptography. Apart from establishing the conceptual foundations of lattice testing, our results include the following: 1. We demonstrate upper and lower bounds on the query complexity of local testing for the well-known family of code formula lattices. Furthermore, we instantiate our results with code formula lattices constructed from Reed-Muller codes, and obtain nearly-tight bounds. 2. We show that in order to achieve low query complexity, it is sufficient to design one-sided non-adaptive canonical tests. This result is akin to, and based on an analogous result for error-correcting codes due to Ben-Sasson et al. (SIAM J. Computing 35(1) pp1-21)

    Interactive Oracle Proofs with Constant Rate and Query Complexity

    Get PDF
    We study interactive oracle proofs (IOPs) [BCS16,RRR16], which combine aspects of probabilistically checkable proofs (PCPs) and interactive proofs (IPs). We present IOP constructions and techniques that enable us to obtain tradeoffs in proof length versus query complexity that are not known to be achievable via PCPs or IPs alone. Our main results are: 1. Circuit satisfiability has 3-round IOPs with linear proof length (counted in bits) and constant query complexity. 2. Reed-Solomon codes have 2-round IOPs of proximity with linear proof length and constant query complexity. 3. Tensor product codes have 1-round IOPs of proximity with sublinear proof length and constant query complexity. For all the above, known PCP constructions give quasilinear proof length and constant query complexity [BS08,Din07]. Also, for circuit satisfiability, [BKKMS13] obtain PCPs with linear proof length but sublinear (and super-constant) query complexity. As in [BKKMS13], we rely on algebraic-geometry codes to obtain our first result; but, unlike that work, our use of such codes is much "lighter" because we do not rely on any automorphisms of the code. We obtain our results by proving and combining "IOP-analogues" of tools underlying numerous IPs and PCPs: * Interactive proof composition. Proof composition [AS98] is used to reduce the query complexity of PCP verifiers, at the cost of increasing proof length by an additive factor that is exponential in the verifier\u27s randomness complexity. We prove a composition theorem for IOPs where this additive factor is linear. * Sublinear sumcheck. The sumcheck protocol [LFKN92] is an IP that enables the verifier to check the sum of values of a low-degree multi-variate polynomial on an exponentially-large hypercube, but the verifier\u27s running time depends linearly on the bound on individual degrees. We prove a sumcheck protocol for IOPs where this dependence is sublinear (e.g., polylogarithmic). Our work demonstrates that even constant-round IOPs are more efficient than known PCPs and IPs

    Robust Quantum Entanglement at (Nearly) Room Temperature

    Get PDF
    We formulate a mixed-state analog of the NLTS conjecture [FH14] by asking whether there exist topologically-ordered systems for which the thermal Gibbs state for constant temperature is globally-entangled in the sense that it cannot even be approximated by shallow quantum circuits. We then prove this conjecture holds for nearly optimal parameters: when the "inverse temperature" is almost a constant (temperature decays as 1/loglog(n))) and the Hamiltonian is nearly local (log(n)-local). The construction and proof combine quantum codes that arise from high-dimensional manifolds [Has17, LLZ19], the local-decoding approach to quantum codes [LTZ15, FGL18] and quantum locally-testable codes [AE15].Comment: Strengthened main theorem, small modifications to the proof, revised introductio
    corecore