855 research outputs found

    Fast Method Based on Fuzzy Logic for Gaussian-Impulsive Noise Reduction in CT Medical Images

    Get PDF
    To remove Gaussian-impulsive mixed noise in CT medical images, a parallel filter based on fuzzy logic is applied. The used methodology is structured in two steps. A method based on a fuzzy metric is applied to remove the impulsive noise at the first step. To reduce Gaussian noise, at the second step, a fuzzy peer group filter is used on the filtered image obtained at the first step. A comparative analysis with state-of-the-art methods is performed on CT medical images using qualitative and quantitative measures evidencing the effectiveness of the proposed algorithm. The parallel method is parallelized on shared memory multiprocessors. After applying parallel computing strategies, the obtained computing times indicate that the introduced filter enables to reduce Gaussian-impulse mixed noise on CT medical images in real-time.This research was funded by the Spanish Ministry of Science, Innovation and Universities (Grant RTI2018-098156-B-C54), and it was co-financed with FEDER funds

    Fuzzy metrics and fuzzy logic for colour image filtering

    Full text link
    El filtrado de imagen es una tarea fundamental para la mayoría de los sistemas de visión por computador cuando las imágenes se usan para análisis automático o, incluso, para inspección humana. De hecho, la presencia de ruido en una imagen puede ser un grave impedimento para las sucesivas tareas de procesamiento de imagen como, por ejemplo, la detección de bordes o el reconocimiento de patrones u objetos y, por lo tanto, el ruido debe ser reducido. En los últimos años el interés por utilizar imágenes en color se ha visto incrementado de forma significativa en una gran variedad de aplicaciones. Es por esto que el filtrado de imagen en color se ha convertido en un área de investigación interesante. Se ha observado ampliamente que las imágenes en color deben ser procesadas teniendo en cuenta la correlación existente entre los distintos canales de color de la imagen. En este sentido, la solución probablemente más conocida y estudiada es el enfoque vectorial. Las primeras soluciones de filtrado vectorial, como por ejemplo el filtro de mediana vectorial (VMF) o el filtro direccional vectorial (VDF), se basan en la teoría de la estadística robusta y, en consecuencia, son capaces de realizar un filtrado robusto. Desafortunadamente, estas técnicas no se adaptan a las características locales de la imagen, lo que implica que usualmente los bordes y detalles de las imágenes se emborronan y pierden calidad. A fin de solventar este problema, varios filtros vectoriales adaptativos se han propuesto recientemente. En la presente Tesis doctoral se han llevado a cabo dos tareas principales: (i) el estudio de la aplicabilidad de métricas difusas en tareas de procesamiento de imagen y (ii) el diseño de nuevos filtros para imagen en color que sacan provecho de las propiedades de las métricas difusas y la lógica difusa. Los resultados experimentales presentados en esta Tesis muestran que las métricas difusas y la lógica difusa son herramientas útiles para diseñar técnicas de filtrado,Morillas Gómez, S. (2007). Fuzzy metrics and fuzzy logic for colour image filtering [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1879Palanci

    Hybrid Deep Learning Framework for Reduction of Mixed Noise via Low Rank Noise Estimation

    Get PDF
    In this paper, an innovative hybridized deep learning framework (EN-CNN) is presented for image noise reduction where the noise originates from heterogeneous sources. More specifically, EN-CNN is applied to the benchmark natural images affected by a mixture of additive white gaussian noise (AWGN) and impulsive noise (IN). Reduction of mixed noise (AWGN and IN) is relatively more involved as compared to removing simply one type of noise. In fact, mitigating the impact of a mixture of multiple noise types becomes exceedingly challenging due to simultaneous presence of different noise statistics. Although, various effective deep learning approaches and the classical state-of-the-art approaches like WNNM have been used to suppress AWGN noise only, the same techniques are not suitable in case of mixed noise. In this context, EN-CNN can not only infer changed noise statistics but can also effectively eliminate residual noise. Firstly, EN-CNN employs the classical method of neighborhood filtering followed by non-local low rank estimation to respectively reduce IN noise and estimate the residual noise characteristics after reducing IN noise. As a result of this step, we obtain a pre-processed image with residual noise statistics. Secondly, convolutional neural network (CNN) is applied to the pre-processed image based on the noise statistics inferred in the first step. This two pronged strategy, in conjunction with the deep learning mechanism, effectively handles the mixed noise suppression. As a result, the suggested framework yields promising results as compared to various state-of-the-art approaches.publishedVersio

    Robust Framework For Digital Image Denoising And Deblurring

    Get PDF
    Image restoration concerns improving visual quality of a captured image that goes beyond the achievable limit of camera. Recent advancement in imaging and multimedia technology has advocated the interests of image restoration through software, of which applications permeate consumer photography as well as different industries. Unfortunately, the captured images often suffer from degradations, such as blurring, noise, unpleasant artifacts, and more, due to limitations of the imaging system. Despite considerable efforts have been channeled to advance the state-of-the-art methods, surprisingly, these methods are often slow and only designed for handling specific degradation model

    Robustifying Vector Median Filter

    Get PDF
    This paper describes two methods for impulse noise reduction in colour images that outperform the vector median filter from the noise reduction capability point of view. Both methods work by determining first the vector median in a given filtering window. Then, the use of complimentary information from componentwise analysis allows to build robust outputs from more reliable components. The correlation among the colour channels is taken into account in the processing and, as a result, a more robust filter able to process colour images without introducing colour artifacts is obtained. Experimental results show that the images filtered with the proposed method contain less noisy pixels than those obtained through the vector median filter. Objective measures demonstrate the goodness of the achieved improvement
    corecore