10,862 research outputs found

    2-D iteratively reweighted least squares lattice algorithm and its application to defect detection in textured images

    Get PDF
    In this paper, a 2-D iteratively reweighted least squares lattice algorithm, which is robust to the outliers, is introduced and is applied to defect detection problem in textured images. First, the philosophy of using different optimization functions that results in weighted least squares solution in the theory of 1-D robust regression is extended to 2-D. Then a new algorithm is derived which combines 2-D robust regression concepts with the 2-D recursive least squares lattice algorithm. With this approach, whatever the probability distribution of the prediction error may be, small weights are assigned to the outliers so that the least squares algorithm will be less sensitive to the outliers. Implementation of the proposed iteratively reweighted least squares lattice algorithm to the problem of defect detection in textured images is then considered. The performance evaluation, in terms of defect detection rate, demonstrates the importance of the proposed algorithm in reducing the effect of the outliers that generally correspond to false alarms in classification of textures as defective or nondefective

    A highly modular adaptive lattice algorithm for multichannel least squares filtering

    Get PDF
    In this paper a highly modular adaptive lattice algorithm for multichannel least squares FIR filtering and multivariable system identification is presented. Multichannel filters with different number of delay elements per input channel are allowed. The main features of the proposed multichannel adaptive lattice least squares algorithm is the use of scalar only operations, multiplications/divisions and additions, and the local communication which enables the development of a fully pipelining architecture. The tracking capability and the numerical stability and accuracy of the proposed technique are illustrated by simulations

    Adaptive control of large space structures using recursive lattice filters

    Get PDF
    The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance

    On line power spectra identification and whitening for the noise in interferometric gravitational wave detectors

    Get PDF
    In this paper we address both to the problem of identifying the noise Power Spectral Density of interferometric detectors by parametric techniques and to the problem of the whitening procedure of the sequence of data. We will concentrate the study on a Power Spectral Density like the one of the Italian-French detector VIRGO and we show that with a reasonable finite number of parameters we succeed in modeling a spectrum like the theoretical one of VIRGO, reproducing all its features. We propose also the use of adaptive techniques to identify and to whiten on line the data of interferometric detectors. We analyze the behavior of the adaptive techniques in the field of stochastic gradient and in the Least Squares ones.Comment: 28 pages, 21 figures, uses iopart.cls accepted for pubblication on Classical and Quantum Gravit

    Noise parametric identification and whitening for LIGO 40-meter interferometer data

    Full text link
    We report the analysis we made on data taken by Caltech 40-meter prototype interferometer to identify the noise power spectral density and to whiten the sequence of noise. We concentrate our study on data taken in November 1994, in particular we analyzed two frames of data: the 18nov94.2.frame and the 19nov94.2.frame. We show that it is possible to whiten these data, to a good degree of whiteness, using a high order whitening filter. Moreover we can choose to whiten only restricted band of frequencies around the region we are interested in, obtaining a higher level of whiteness.Comment: 11 pages, 15 figures, accepted for publication by Physical Review

    Video Propagation Networks

    Full text link
    We propose a technique that propagates information forward through video data. The method is conceptually simple and can be applied to tasks that require the propagation of structured information, such as semantic labels, based on video content. We propose a 'Video Propagation Network' that processes video frames in an adaptive manner. The model is applied online: it propagates information forward without the need to access future frames. In particular we combine two components, a temporal bilateral network for dense and video adaptive filtering, followed by a spatial network to refine features and increased flexibility. We present experiments on video object segmentation and semantic video segmentation and show increased performance comparing to the best previous task-specific methods, while having favorable runtime. Additionally we demonstrate our approach on an example regression task of color propagation in a grayscale video.Comment: Appearing in Computer Vision and Pattern Recognition, 2017 (CVPR'17

    A robust statistics based adaptive lattice-ladder filter in impulsive noise

    Get PDF
    In this paper, a new robust adaptive lattice-ladder filter for impulsive noise suppression is proposed. The filter is obtained by applying the non-linear filtering technique in [l] and the robust statistic approach to the gradient adaptive lattice filter. A systematic method is also developed to determine the corresponding threshold parameters for impulse suppression. Simulation results showed that the performance of the proposed algorithm is better than the conventional RLS, N-RLS, the gradient adaptive lattice normalised-LMS (GAL-NLMS), RMN and ATNA algorithms when the input and desired signals are corrupted by individual and consecutive impulses. The initial convergence, steady-state error, computational complexity and tracking capability of the proposed algorithm are also comparable to the conventional GAL-NLMS algorithm.published_or_final_versio

    A Huber recursive least squares adaptive lattice filter for impulse noise suppression

    Get PDF
    This paper proposes a new adaptive filtering algorithm called the Huber Prior Error-Feedback Least Squares Lattice (H-PEF-LSL) algorithm for robust adaptive filtering in impulse noise environment. It minimizes a modified Huber M-estimator based cost function, instead of the least squares cost function. In addition, the simple modified Huber M-estimate cost function also allows us to perform the time and order recursive updates in the conventional PEF-LSL algorithm so that the complexity can be significantly reduced to O(M), where M is the length of the adaptive filter. The new algorithm can also be viewed as an efficient implementation of the recursive least M-estimate (RLM) algorithm recently proposed by the authors [1], which has a complexity of O(M 2). Simulation results show that the proposed H-PEF-LSL algorithm is more robust than the conventional PEF-LSL algorithm in suppressing the adverse influence of the impulses at the input and desired signals with small additional computational cost.published_or_final_versio
    corecore