2,521 research outputs found

    New sequential partial-update least mean M-estimate algorithms for robust adaptive system identification in impulsive noise

    Get PDF
    The sequential partial-update least mean square (S-LMS)-based algorithms are efficient methods for reducing the arithmetic complexity in adaptive system identification and other industrial informatics applications. They are also attractive in acoustic applications where long impulse responses are encountered. A limitation of these algorithms is their degraded performances in an impulsive noise environment. This paper proposes new robust counterparts for the S-LMS family based on M-estimation. The proposed sequential least mean M-estimate (S-LMM) family of algorithms employ nonlinearity to improve their robustness to impulsive noise. Another contribution of this paper is the presentation of a convergence performance analysis for the S-LMS/S-LMM family for Gaussian inputs and additive Gaussian or contaminated Gaussian noises. The analysis is important for engineers to understand the behaviors of these algorithms and to select appropriate parameters for practical realizations. The theoretical analyses reveal the advantages of input normalization and the M-estimation in combating impulsive noise. Computer simulations on system identification and joint active noise and acoustic echo cancellations in automobiles with double-talk are conducted to verify the theoretical results and the effectiveness of the proposed algorithms. © 2010 IEEE.published_or_final_versio

    Acoustic-channel attack and defence methods for personal voice assistants

    Get PDF
    Personal Voice Assistants (PVAs) are increasingly used as interface to digital environments. Voice commands are used to interact with phones, smart homes or cars. In the US alone the number of smart speakers such as Amazon’s Echo and Google Home has grown by 78% to 118.5 million and 21% of the US population own at least one device. Given the increasing dependency of society on PVAs, security and privacy of these has become a major concern of users, manufacturers and policy makers. Consequently, a steep increase in research efforts addressing security and privacy of PVAs can be observed in recent years. While some security and privacy research applicable to the PVA domain predates their recent increase in popularity and many new research strands have emerged, there lacks research dedicated to PVA security and privacy. The most important interaction interface between users and a PVA is the acoustic channel and acoustic channel related security and privacy studies are desirable and required. The aim of the work presented in this thesis is to enhance the cognition of security and privacy issues of PVA usage related to the acoustic channel, to propose principles and solutions to key usage scenarios to mitigate potential security threats, and to present a novel type of dangerous attack which can be launched only by using a PVA alone. The five core contributions of this thesis are: (i) a taxonomy is built for the research domain of PVA security and privacy issues related to acoustic channel. An extensive research overview on the state of the art is provided, describing a comprehensive research map for PVA security and privacy. It is also shown in this taxonomy where the contributions of this thesis lie; (ii) Work has emerged aiming to generate adversarial audio inputs which sound harmless to humans but can trick a PVA to recognise harmful commands. The majority of work has been focused on the attack side, but there rarely exists work on how to defend against this type of attack. A defence method against white-box adversarial commands is proposed and implemented as a prototype. It is shown that a defence Automatic Speech Recognition (ASR) can work in parallel with the PVA’s main one, and adversarial audio input is detected if the difference in the speech decoding results between both ASR surpasses a threshold. It is demonstrated that an ASR that differs in architecture and/or training data from the the PVA’s main ASR is usable as protection ASR; (iii) PVAs continuously monitor conversations which may be transported to a cloud back end where they are stored, processed and maybe even passed on to other service providers. A user has limited control over this process when a PVA is triggered without user’s intent or a PVA belongs to others. A user is unable to control the recording behaviour of surrounding PVAs, unable to signal privacy requirements and unable to track conversation recordings. An acoustic tagging solution is proposed aiming to embed additional information into acoustic signals processed by PVAs. A user employs a tagging device which emits an acoustic signal when PVA activity is assumed. Any active PVA will embed this tag into their recorded audio stream. The tag may signal a cooperating PVA or back-end system that a user has not given a recording consent. The tag may also be used to trace when and where a recording was taken if necessary. A prototype tagging device based on PocketSphinx is implemented. Using Google Home Mini as the PVA, it is demonstrated that the device can tag conversations and the tagging signal can be retrieved from conversations stored in the Google back-end system; (iv) Acoustic tagging provides users the capability to signal their permission to the back-end PVA service, and another solution inspired by Denial of Service (DoS) is proposed as well for protecting user privacy. Although PVAs are very helpful, they are also continuously monitoring conversations. When a PVA detects a wake word, the immediately following conversation is recorded and transported to a cloud system for further analysis. An active protection mechanism is proposed: reactive jamming. A Protection Jamming Device (PJD) is employed to observe conversations. Upon detection of a PVA wake word the PJD emits an acoustic jamming signal. The PJD must detect the wake word faster than the PVA such that the jamming signal still prevents wake word detection by the PVA. An evaluation of the effectiveness of different jamming signals and overlap between wake words and the jamming signals is carried out. 100% jamming success can be achieved with an overlap of at least 60% with a negligible false positive rate; (v) Acoustic components (speakers and microphones) on a PVA can potentially be re-purposed to achieve acoustic sensing. This has great security and privacy implication due to the key role of PVAs in digital environments. The first active acoustic side-channel attack is proposed. Speakers are used to emit human inaudible acoustic signals and the echo is recorded via microphones, turning the acoustic system of a smartphone into a sonar system. The echo signal can be used to profile user interaction with the device. For example, a victim’s finger movement can be monitored to steal Android unlock patterns. The number of candidate unlock patterns that an attacker must try to authenticate herself to a Samsung S4 phone can be reduced by up to 70% using this novel unnoticeable acoustic side-channel

    Spatial, Spectral, and Perceptual Nonlinear Noise Reduction for Hands-free Microphones in a Car

    Get PDF
    Speech enhancement in an automobile is a challenging problem because interference can come from engine noise, fans, music, wind, road noise, reverberation, echo, and passengers engaging in other conversations. Hands-free microphones make the situation worse because the strength of the desired speech signal reduces with increased distance between the microphone and talker. Automobile safety is improved when the driver can use a hands-free interface to phones and other devices instead of taking his eyes off the road. The demand for high quality hands-free communication in the automobile requires the introduction of more powerful algorithms. This thesis shows that a unique combination of five algorithms can achieve superior speech enhancement for a hands-free system when compared to beamforming or spectral subtraction alone. Several different designs were analyzed and tested before converging on the configuration that achieved the best results. Beamforming, voice activity detection, spectral subtraction, perceptual nonlinear weighting, and talker isolation via pitch tracking all work together in a complementary iterative manner to create a speech enhancement system capable of significantly enhancing real world speech signals. The following conclusions are supported by the simulation results using data recorded in a car and are in strong agreement with theory. Adaptive beamforming, like the Generalized Side-lobe Canceller (GSC), can be effectively used if the filters only adapt during silent data frames because too much of the desired speech is cancelled otherwise. Spectral subtraction removes stationary noise while perceptual weighting prevents the introduction of offensive audible noise artifacts. Talker isolation via pitch tracking can perform better when used after beamforming and spectral subtraction because of the higher accuracy obtained after initial noise removal. Iterating the algorithm once increases the accuracy of the Voice Activity Detection (VAD), which improves the overall performance of the algorithm. Placing the microphone(s) on the ceiling above the head and slightly forward of the desired talker appears to be the best location in an automobile based on the experiments performed in this thesis. Objective speech quality measures show that the algorithm removes a majority of the stationary noise in a hands-free environment of an automobile with relatively minimal speech distortion

    Performance improvement of adaptive filters for echo cancellation applications

    Get PDF
    This work focuses on performance improvement of adaptive algorithms for both line and acoustic echo cancellation applications. Echo in telephone networks, Line Echo, is observed naturally due to impedance mismatches at the long-distance/local-loop interface. Acoustic echo is due to the acoustic coupling between the microphone and the speaker of a speakerphone. The Affine Projection (APA) and the Fast Affine Projection (FAP) algorithms are two examples of reliable and efficient adaptive filters used for echo cancellation...This thesis presents, Variable Regularized Fast Affine Projections (VR-FAP) algorithm, with a varying, optimal regularization value which provides the desirable property of both fast and low misadjustment of the filter --Abstract, page iii

    Security and privacy problems in voice assistant applications: A survey

    Get PDF
    Voice assistant applications have become omniscient nowadays. Two models that provide the two most important functions for real-life applications (i.e., Google Home, Amazon Alexa, Siri, etc.) are Automatic Speech Recognition (ASR) models and Speaker Identification (SI) models. According to recent studies, security and privacy threats have also emerged with the rapid development of the Internet of Things (IoT). The security issues researched include attack techniques toward machine learning models and other hardware components widely used in voice assistant applications. The privacy issues include technical-wise information stealing and policy-wise privacy breaches. The voice assistant application takes a steadily growing market share every year, but their privacy and security issues never stopped causing huge economic losses and endangering users' personal sensitive information. Thus, it is important to have a comprehensive survey to outline the categorization of the current research regarding the security and privacy problems of voice assistant applications. This paper concludes and assesses five kinds of security attacks and three types of privacy threats in the papers published in the top-tier conferences of cyber security and voice domain
    • …
    corecore