106,662 research outputs found

    A Kernel Perspective for Regularizing Deep Neural Networks

    Get PDF
    We propose a new point of view for regularizing deep neural networks by using the norm of a reproducing kernel Hilbert space (RKHS). Even though this norm cannot be computed, it admits upper and lower approximations leading to various practical strategies. Specifically, this perspective (i) provides a common umbrella for many existing regularization principles, including spectral norm and gradient penalties, or adversarial training, (ii) leads to new effective regularization penalties, and (iii) suggests hybrid strategies combining lower and upper bounds to get better approximations of the RKHS norm. We experimentally show this approach to be effective when learning on small datasets, or to obtain adversarially robust models.Comment: ICM

    Towards Robust Neural Networks via Random Self-ensemble

    Full text link
    Recent studies have revealed the vulnerability of deep neural networks: A small adversarial perturbation that is imperceptible to human can easily make a well-trained deep neural network misclassify. This makes it unsafe to apply neural networks in security-critical applications. In this paper, we propose a new defense algorithm called Random Self-Ensemble (RSE) by combining two important concepts: {\bf randomness} and {\bf ensemble}. To protect a targeted model, RSE adds random noise layers to the neural network to prevent the strong gradient-based attacks, and ensembles the prediction over random noises to stabilize the performance. We show that our algorithm is equivalent to ensemble an infinite number of noisy models fϵf_\epsilon without any additional memory overhead, and the proposed training procedure based on noisy stochastic gradient descent can ensure the ensemble model has a good predictive capability. Our algorithm significantly outperforms previous defense techniques on real data sets. For instance, on CIFAR-10 with VGG network (which has 92\% accuracy without any attack), under the strong C\&W attack within a certain distortion tolerance, the accuracy of unprotected model drops to less than 10\%, the best previous defense technique has 48%48\% accuracy, while our method still has 86%86\% prediction accuracy under the same level of attack. Finally, our method is simple and easy to integrate into any neural network.Comment: ECCV 2018 camera read

    EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis

    Get PDF
    Data clustering has received a lot of attention and numerous methods, algorithms and software packages are available. Among these techniques, parametric finite-mixture models play a central role due to their interesting mathematical properties and to the existence of maximum-likelihood estimators based on expectation-maximization (EM). In this paper we propose a new mixture model that associates a weight with each observed point. We introduce the weighted-data Gaussian mixture and we derive two EM algorithms. The first one considers a fixed weight for each observation. The second one treats each weight as a random variable following a gamma distribution. We propose a model selection method based on a minimum message length criterion, provide a weight initialization strategy, and validate the proposed algorithms by comparing them with several state of the art parametric and non-parametric clustering techniques. We also demonstrate the effectiveness and robustness of the proposed clustering technique in the presence of heterogeneous data, namely audio-visual scene analysis.Comment: 14 pages, 4 figures, 4 table
    • …
    corecore