3,036 research outputs found

    Multi-Lane Perception Using Feature Fusion Based on GraphSLAM

    Full text link
    An extensive, precise and robust recognition and modeling of the environment is a key factor for next generations of Advanced Driver Assistance Systems and development of autonomous vehicles. In this paper, a real-time approach for the perception of multiple lanes on highways is proposed. Lane markings detected by camera systems and observations of other traffic participants provide the input data for the algorithm. The information is accumulated and fused using GraphSLAM and the result constitutes the basis for a multilane clothoid model. To allow incorporation of additional information sources, input data is processed in a generic format. Evaluation of the method is performed by comparing real data, collected with an experimental vehicle on highways, to a ground truth map. The results show that ego and adjacent lanes are robustly detected with high quality up to a distance of 120 m. In comparison to serial lane detection, an increase in the detection range of the ego lane and a continuous perception of neighboring lanes is achieved. The method can potentially be utilized for the longitudinal and lateral control of self-driving vehicles

    A Flexible Modeling Approach for Robust Multi-Lane Road Estimation

    Full text link
    A robust estimation of road course and traffic lanes is an essential part of environment perception for next generations of Advanced Driver Assistance Systems and development of self-driving vehicles. In this paper, a flexible method for modeling multiple lanes in a vehicle in real time is presented. Information about traffic lanes, derived by cameras and other environmental sensors, that is represented as features, serves as input for an iterative expectation-maximization method to estimate a lane model. The generic and modular concept of the approach allows to freely choose the mathematical functions for the geometrical description of lanes. In addition to the current measurement data, the previously estimated result as well as additional constraints to reflect parallelism and continuity of traffic lanes, are considered in the optimization process. As evaluation of the lane estimation method, its performance is showcased using cubic splines for the geometric representation of lanes in simulated scenarios and measurements recorded using a development vehicle. In a comparison to ground truth data, robustness and precision of the lanes estimated up to a distance of 120 m are demonstrated. As a part of the environmental modeling, the presented method can be utilized for longitudinal and lateral control of autonomous vehicles

    The Right (Angled) Perspective: Improving the Understanding of Road Scenes Using Boosted Inverse Perspective Mapping

    Full text link
    Many tasks performed by autonomous vehicles such as road marking detection, object tracking, and path planning are simpler in bird's-eye view. Hence, Inverse Perspective Mapping (IPM) is often applied to remove the perspective effect from a vehicle's front-facing camera and to remap its images into a 2D domain, resulting in a top-down view. Unfortunately, however, this leads to unnatural blurring and stretching of objects at further distance, due to the resolution of the camera, limiting applicability. In this paper, we present an adversarial learning approach for generating a significantly improved IPM from a single camera image in real time. The generated bird's-eye-view images contain sharper features (e.g. road markings) and a more homogeneous illumination, while (dynamic) objects are automatically removed from the scene, thus revealing the underlying road layout in an improved fashion. We demonstrate our framework using real-world data from the Oxford RobotCar Dataset and show that scene understanding tasks directly benefit from our boosted IPM approach.Comment: equal contribution of first two authors, 8 full pages, 6 figures, accepted at IV 201
    • …
    corecore