23,347 research outputs found

    Robust lane detection in urban environments

    Full text link
    Most of the lane marking detection algorithms reported in the literature are suitable for highway scenarios. This paper presents a novel clustered particle filter based approach to lane detection, which is suitable for urban streets in normal traffic conditions. Furthermore, a quality measure for the detection is calculated as a measure of reliability. The core of this approach is the usage of weak models, i.e. the avoidance of strong assumptions about the road geometry. Experiments were carried out in Sydney urban areas with a vehicle mounted laser range scanner and a ccd camera. Through experimentations, we have shown that a clustered particle filter can be used to efficiently extract lane markings. ©2007 IEEE

    Towards Full Automated Drive in Urban Environments: A Demonstration in GoMentum Station, California

    Full text link
    Each year, millions of motor vehicle traffic accidents all over the world cause a large number of fatalities, injuries and significant material loss. Automated Driving (AD) has potential to drastically reduce such accidents. In this work, we focus on the technical challenges that arise from AD in urban environments. We present the overall architecture of an AD system and describe in detail the perception and planning modules. The AD system, built on a modified Acura RLX, was demonstrated in a course in GoMentum Station in California. We demonstrated autonomous handling of 4 scenarios: traffic lights, cross-traffic at intersections, construction zones and pedestrians. The AD vehicle displayed safe behavior and performed consistently in repeated demonstrations with slight variations in conditions. Overall, we completed 44 runs, encompassing 110km of automated driving with only 3 cases where the driver intervened the control of the vehicle, mostly due to error in GPS positioning. Our demonstration showed that robust and consistent behavior in urban scenarios is possible, yet more investigation is necessary for full scale roll-out on public roads.Comment: Accepted to Intelligent Vehicles Conference (IV 2017

    An Empirical Evaluation of Deep Learning on Highway Driving

    Full text link
    Numerous groups have applied a variety of deep learning techniques to computer vision problems in highway perception scenarios. In this paper, we presented a number of empirical evaluations of recent deep learning advances. Computer vision, combined with deep learning, has the potential to bring about a relatively inexpensive, robust solution to autonomous driving. To prepare deep learning for industry uptake and practical applications, neural networks will require large data sets that represent all possible driving environments and scenarios. We collect a large data set of highway data and apply deep learning and computer vision algorithms to problems such as car and lane detection. We show how existing convolutional neural networks (CNNs) can be used to perform lane and vehicle detection while running at frame rates required for a real-time system. Our results lend credence to the hypothesis that deep learning holds promise for autonomous driving.Comment: Added a video for lane detectio
    • …
    corecore