247 research outputs found

    Process of Fingerprint Authentication using Cancelable Biohashed Template

    Get PDF
    Template protection using cancelable biometrics prevents data loss and hacking stored templates, by providing considerable privacy and security. Hashing and salting techniques are used to build resilient systems. Salted password method is employed to protect passwords against different types of attacks namely brute-force attack, dictionary attack, rainbow table attacks. Salting claims that random data can be added to input of hash function to ensure unique output. Hashing salts are speed bumps in an attacker’s road to breach user’s data. Research proposes a contemporary two factor authenticator called Biohashing. Biohashing procedure is implemented by recapitulated inner product over a pseudo random number generator key, as well as fingerprint features that are a network of minutiae. Cancelable template authentication used in fingerprint-based sales counter accelerates payment process. Fingerhash is code produced after applying biohashing on fingerprint. Fingerhash is a binary string procured by choosing individual bit of sign depending on a preset threshold. Experiment is carried using benchmark FVC 2002 DB1 dataset. Authentication accuracy is found to be nearly 97\%. Results compared with state-of art approaches finds promising

    Reference face graph for face recognition

    Get PDF
    Face recognition has been studied extensively; however, real-world face recognition still remains a challenging task. The demand for unconstrained practical face recognition is rising with the explosion of online multimedia such as social networks, and video surveillance footage where face analysis is of significant importance. In this paper, we approach face recognition in the context of graph theory. We recognize an unknown face using an external reference face graph (RFG). An RFG is generated and recognition of a given face is achieved by comparing it to the faces in the constructed RFG. Centrality measures are utilized to identify distinctive faces in the reference face graph. The proposed RFG-based face recognition algorithm is robust to the changes in pose and it is also alignment free. The RFG recognition is used in conjunction with DCT locality sensitive hashing for efficient retrieval to ensure scalability. Experiments are conducted on several publicly available databases and the results show that the proposed approach outperforms the state-of-the-art methods without any preprocessing necessities such as face alignment. Due to the richness in the reference set construction, the proposed method can also handle illumination and expression variation

    Image Hash Minimization for Tamper Detection

    Full text link
    Tamper detection using image hash is a very common problem of modern days. Several research and advancements have already been done to address this problem. However, most of the existing methods lack the accuracy of tamper detection when the tampered area is low, as well as requiring long image hashes. In this paper, we propose a novel method objectively to minimize the hash length while enhancing the performance at low tampered area.Comment: Published at the 9th International Conference on Advances in Pattern Recognition, 201

    Robust image hashing using ring partition-PGNMF and local features

    Get PDF

    Perceptual Video Hashing for Content Identification and Authentication

    Get PDF
    Perceptual hashing has been broadly used in the literature to identify similar contents for video copy detection. It has also been adopted to detect malicious manipulations for video authentication. However, targeting both applications with a single system using the same hash would be highly desirable as this saves the storage space and reduces the computational complexity. This paper proposes a perceptual video hashing system for content identification and authentication. The objective is to design a hash extraction technique that can withstand signal processing operations on one hand and detect malicious attacks on the other hand. The proposed system relies on a new signal calibration technique for extracting the hash using the discrete cosine transform (DCT) and the discrete sine transform (DST). This consists of determining the number of samples, called the normalizing shift, that is required for shifting a digital signal so that the shifted version matches a certain pattern according to DCT/DST coefficients. The rationale for the calibration idea is that the normalizing shift resists signal processing operations while it exhibits sensitivity to local tampering (i.e., replacing a small portion of the signal with a different one). While the same hash serves both applications, two different similarity measures have been proposed for video identification and authentication, respectively. Through intensive experiments with various types of video distortions and manipulations, the proposed system has been shown to outperform related state-of-the art video hashing techniques in terms of identification and authentication with the advantageous ability to locate tampered regions

    Security/privacy analysis of biometric hashing and template protection for fingerprint minutiae

    Get PDF
    This thesis has two main parts. The first part deals with security and privacy analysis of biometric hashing. The second part introduces a method for fixed-length feature vector extraction and hash generation from fingerprint minutiae. The upsurge of interest in biometric systems has led to development of biometric template protection methods in order to overcome security and privacy problems. Biometric hashing produces a secure binary template by combining a personal secret key and the biometric of a person, which leads to a two factor authentication method. This dissertation analyzes biometric hashing both from a theoretical point of view and in regards to its practical application. For theoretical evaluation of biohashes, a systematic approach which uses estimated entropy based on degree of freedom of a binomial distribution is outlined. In addition, novel practical security and privacy attacks against face image hashing are presented to quantify additional protection provided by biometrics in cases where the secret key is compromised (i.e., the attacker is assumed to know the user's secret key). Two of these attacks are based on sparse signal recovery techniques using one-bit compressed sensing in addition to two other minimum-norm solution based attacks. A rainbow attack based on a large database of faces is also introduced. The results show that biometric templates would be in serious danger of being exposed when the secret key is known by an attacker, and the system would be under a serious threat as well. Due to its distinctiveness and performance, fingerprint is preferred among various biometric modalities in many settings. Most fingerprint recognition systems use minutiae information, which is an unordered collection of minutiae locations and orientations Some advanced template protection algorithms (such as fuzzy commitment and other modern cryptographic alternatives) require a fixed-length binary template. However, such a template protection method is not directly applicable to fingerprint minutiae representation which by its nature is of variable size. This dissertation introduces a novel and empirically validated framework that represents a minutiae set with a rotation invariant fixed-length vector and hence enables using biometric template protection methods for fingerprint recognition without signi cant loss in verification performance. The introduced framework is based on using local representations around each minutia as observations modeled by a Gaussian mixture model called a universal background model (UBM). For each fingerprint, we extract a fixed length super-vector of rst order statistics through alignment with the UBM. These super-vectors are then used for learning linear support vector machine (SVM) models per person for verifiation. In addition, the xed-length vector and the linear SVM model are both converted into binary hashes and the matching process is reduced to calculating the Hamming distance between them so that modern cryptographic alternatives based on homomorphic encryption can be applied for minutiae template protection

    A Secure Online Fingerprint Authentication System for Industrial IoT Devices over 5G Networks

    Get PDF
    The development of 5G networks has rapidly increased the use of Industrial Internet of Things (IIoT) devices for control, monitoring, and processing purposes. Biometric-based user authentication can prevent unauthorized access to IIoT devices, thereby safeguarding data security during production. However, most biometric authentication systems in the IIoT have no template protection, thus risking raw biometric data stored as templates in central databases or IIoT devices. Moreover, traditional biometric authentication faces slow, limited database holding capacity and data transmission problems. To address these issues, in this paper we propose a secure online fingerprint authentication system for IIoT devices over 5G networks. The core of the proposed system is the design of a cancelable fingerprint template, which protects original minutia features and provides privacy and security guarantee for both entity users and the message content transmitted between IIoT devices and the cloud server via 5G networks. Compared with state-of-the-art methods, the proposed authentication system shows competitive performance on six public fingerprint databases, while saving computational costs and achieving fast online matching

    Preserving Trustworthiness and Confidentiality for Online Multimedia

    Get PDF
    Technology advancements in areas of mobile computing, social networks, and cloud computing have rapidly changed the way we communicate and interact. The wide adoption of media-oriented mobile devices such as smartphones and tablets enables people to capture information in various media formats, and offers them a rich platform for media consumption. The proliferation of online services and social networks makes it possible to store personal multimedia collection online and share them with family and friends anytime anywhere. Considering the increasing impact of digital multimedia and the trend of cloud computing, this dissertation explores the problem of how to evaluate trustworthiness and preserve confidentiality of online multimedia data. The dissertation consists of two parts. The first part examines the problem of evaluating trustworthiness of multimedia data distributed online. Given the digital nature of multimedia data, editing and tampering of the multimedia content becomes very easy. Therefore, it is important to analyze and reveal the processing history of a multimedia document in order to evaluate its trustworthiness. We propose a new forensic technique called ``Forensic Hash", which draws synergy between two related research areas of image hashing and non-reference multimedia forensics. A forensic hash is a compact signature capturing important information from the original multimedia document to assist forensic analysis and reveal processing history of a multimedia document under question. Our proposed technique is shown to have the advantage of being compact and offering efficient and accurate analysis to forensic questions that cannot be easily answered by convention forensic techniques. The answers that we obtain from the forensic hash provide valuable information on the trustworthiness of online multimedia data. The second part of this dissertation addresses the confidentiality issue of multimedia data stored with online services. The emerging cloud computing paradigm makes it attractive to store private multimedia data online for easy access and sharing. However, the potential of cloud services cannot be fully reached unless the issue of how to preserve confidentiality of sensitive data stored in the cloud is addressed. In this dissertation, we explore techniques that enable confidentiality-preserving search of encrypted multimedia, which can play a critical role in secure online multimedia services. Techniques from image processing, information retrieval, and cryptography are jointly and strategically applied to allow efficient rank-ordered search over encrypted multimedia database and at the same time preserve data confidentiality against malicious intruders and service providers. We demonstrate high efficiency and accuracy of the proposed techniques and provide a quantitative comparative study with conventional techniques based on heavy-weight cryptography primitives

    Perceptual Video Hashing for Content Identification and Authentication

    Full text link
    • …
    corecore