2,575 research outputs found

    Robot kinematic structure classification from time series of visual data

    Full text link
    In this paper we present a novel algorithm to solve the robot kinematic structure identification problem. Given a time series of data, typically obtained processing a set of visual observations, the proposed approach identifies the ordered sequence of links associated to the kinematic chain, the joint type interconnecting each couple of consecutive links, and the input signal influencing the relative motion. Compared to the state of the art, the proposed algorithm has reduced computational costs, and is able to identify also the joints' type sequence

    Contribuciones al uso de marcadores para Navegación Autónoma y Realidad Aumentada

    Get PDF
    Square planar markers are a widely used tools for localization and tracking due to their low cost and high performance. Many applications in Robotics, Unmanned Vehicles and Augmented Reality employ these markers for camera pose estimation with high accuracy. Nevertheless, marker-based systems are affected by several factors that limit their performance. First, the marker detection process is a time-consuming task, which is intensified as the image size increases. As a consequence, the current high-resolution cameras has weakened the processing efficiency of traditional marker systems. Second, marker detection is affected by the presence of noise, blurring and occlusion. The movement of the camera produces image blurriness, generated even by small movements. Furthermore, the marker may be partially or completely occluded in the image, so that it is no longer detected. This thesis deals with the above limitations, proposing novel methodologies and strategies for successful marker detection improving both the efficiency and robustness of these systems. First, a novel multi-scale approach has been developed to speed up the marker detection process. The method takes advantage of the different resolutions at which the image is represented to predict at runtime the optimal scale for detection and identification, as well as following a corner upsampling strategy necessary for an accurate pose estimation. Second, we introduce a new marker design, Fractal Marker, which using a novel keypoint-based method achieves detection even under severe occlusion, while allowing detection over a wider range of distance than traditional markers. Finally, we propose a new marker detection strategy based on Discriminative Correlation Filters (DCF), where the marker and its corners represented in the frequency domain perform more robust and faster detections than state-ofthe- art methods, even under extreme blur conditions.Los marcadores planos cuadrados son una de las herramientas ampliamente utilizadas para la localización y el tracking debido a su bajo coste y su alto rendimiento. Muchas aplicaciones en Robótica, Vehículos no Tripulados y Realidad Aumentada emplean estos marcadores para estimar con alta precisión la posición de la cámara. Sin embargo, los sistemas basados en marcadores se ven afectados por varios factores que limitan su rendimiento. En primer lugar, el proceso de detección de marcadores es una tarea que requiere mucho tiempo y este incrementa a medida que aumenta el tamaño de la imagen. En consecuencia, las actuales cámaras de alta resolución han debilitado la eficacia del procesamiento de los sistemas de marcadores tradicionales. Por otra parte, la detección de marcadores se ve afectada por la presencia de ruido, desenfoque y oclusión. El movimiento de la cámara produce desenfoque de la imagen, generado incluso por pequeños movimientos. Además, el marcador puede aparecer en la imagen parcial o completamente ocluido, dejando de ser detectado. Esta tesis aborda las limitaciones anteriores, proponiendo metodologías y estrategias novedosas para la correcta detección de marcadores, mejorando así tanto la eficiencia como la robustez de estos sistemas. En primer lugar, se ha desarrollado un novedoso enfoque multiescala para acelerar el proceso de detección de marcadores. El método aprovecha las diferentes resoluciones en las que la imagen está representada para predecir en tiempo de ejecución la escala óptima para la detección e identificación, a la vez que sigue una estrategia de upsampling de las esquinas necesaria para estimar la pose con precisión. En segundo lugar, introducimos un nuevo diseño de marcador, Fractal Marker, que, mediante un método basado en keypoints, logra detecciones incluso en casos de oclusión extrema, al tiempo que permite la detección en un rango de distancias más amplio que los marcadores tradicionales. Por último, proponemos una nueva estrategia de detección de marcadores basada en Discriminate Correlation Filters (DCF), donde el marcador y sus esquinas representadas en el dominio de la frecuencia realizan detecciones más robustas y rápidas que los métodos de referencia, incluso bajo condiciones extremas de emborronamiento
    corecore