1,340 research outputs found

    Self-adaptive node-based PCA encodings

    Full text link
    In this paper we propose an algorithm, Simple Hebbian PCA, and prove that it is able to calculate the principal component analysis (PCA) in a distributed fashion across nodes. It simplifies existing network structures by removing intralayer weights, essentially cutting the number of weights that need to be trained in half

    Generating functionals for computational intelligence: the Fisher information as an objective function for self-limiting Hebbian learning rules

    Get PDF
    Generating functionals may guide the evolution of a dynamical system and constitute a possible route for handling the complexity of neural networks as relevant for computational intelligence. We propose and explore a new objective function, which allows to obtain plasticity rules for the afferent synaptic weights. The adaption rules are Hebbian, self-limiting, and result from the minimization of the Fisher information with respect to the synaptic flux. We perform a series of simulations examining the behavior of the new learning rules in various circumstances. The vector of synaptic weights aligns with the principal direction of input activities, whenever one is present. A linear discrimination is performed when there are two or more principal directions; directions having bimodal firing-rate distributions, being characterized by a negative excess kurtosis, are preferred. We find robust performance and full homeostatic adaption of the synaptic weights results as a by-product of the synaptic flux minimization. This self-limiting behavior allows for stable online learning for arbitrary durations. The neuron acquires new information when the statistics of input activities is changed at a certain point of the simulation, showing however, a distinct resilience to unlearn previously acquired knowledge. Learning is fast when starting with randomly drawn synaptic weights and substantially slower when the synaptic weights are already fully adapted

    Wide Field Imaging. I. Applications of Neural Networks to object detection and star/galaxy classification

    Get PDF
    [Abriged] Astronomical Wide Field Imaging performed with new large format CCD detectors poses data reduction problems of unprecedented scale which are difficult to deal with traditional interactive tools. We present here NExt (Neural Extractor): a new Neural Network (NN) based package capable to detect objects and to perform both deblending and star/galaxy classification in an automatic way. Traditionally, in astronomical images, objects are first discriminated from the noisy background by searching for sets of connected pixels having brightnesses above a given threshold and then they are classified as stars or as galaxies through diagnostic diagrams having variables choosen accordingly to the astronomer's taste and experience. In the extraction step, assuming that images are well sampled, NExt requires only the simplest a priori definition of "what an object is" (id est, it keeps all structures composed by more than one pixels) and performs the detection via an unsupervised NN approaching detection as a clustering problem which has been thoroughly studied in the artificial intelligence literature. In order to obtain an objective and reliable classification, instead of using an arbitrarily defined set of features, we use a NN to select the most significant features among the large number of measured ones, and then we use their selected features to perform the classification task. In order to optimise the performances of the system we implemented and tested several different models of NN. The comparison of the NExt performances with those of the best detection and classification package known to the authors (SExtractor) shows that NExt is at least as effective as the best traditional packages.Comment: MNRAS, in press. Paper with higher resolution images is available at http://www.na.astro.it/~andreon/listapub.htm

    Detection and classification of non-stationary signals using sparse representations in adaptive dictionaries

    Get PDF
    Automatic classification of non-stationary radio frequency (RF) signals is of particular interest in persistent surveillance and remote sensing applications. Such signals are often acquired in noisy, cluttered environments, and may be characterized by complex or unknown analytical models, making feature extraction and classification difficult. This thesis proposes an adaptive classification approach for poorly characterized targets and backgrounds based on sparse representations in non-analytical dictionaries learned from data. Conventional analytical orthogonal dictionaries, e.g., Short Time Fourier and Wavelet Transforms, can be suboptimal for classification of non-stationary signals, as they provide a rigid tiling of the time-frequency space, and are not specifically designed for a particular signal class. They generally do not lead to sparse decompositions (i.e., with very few non-zero coefficients), and use in classification requires separate feature selection algorithms. Pursuit-type decompositions in analytical overcomplete (non-orthogonal) dictionaries yield sparse representations, by design, and work well for signals that are similar to the dictionary elements. The pursuit search, however, has a high computational cost, and the method can perform poorly in the presence of realistic noise and clutter. One such overcomplete analytical dictionary method is also analyzed in this thesis for comparative purposes. The main thrust of the thesis is learning discriminative RF dictionaries directly from data, without relying on analytical constraints or additional knowledge about the signal characteristics. A pursuit search is used over the learned dictionaries to generate sparse classification features in order to identify time windows that contain a target pulse. Two state-of-the-art dictionary learning methods are compared, the K-SVD algorithm and Hebbian learning, in terms of their classification performance as a function of dictionary training parameters. Additionally, a novel hybrid dictionary algorithm is introduced, demonstrating better performance and higher robustness to noise. The issue of dictionary dimensionality is explored and this thesis demonstrates that undercomplete learned dictionaries are suitable for non-stationary RF classification. Results on simulated data sets with varying background clutter and noise levels are presented. Lastly, unsupervised classification with undercomplete learned dictionaries is also demonstrated in satellite imagery analysis
    • …
    corecore