25,597 research outputs found

    Polynomial Optimization with Applications to Stability Analysis and Control - Alternatives to Sum of Squares

    Full text link
    In this paper, we explore the merits of various algorithms for polynomial optimization problems, focusing on alternatives to sum of squares programming. While we refer to advantages and disadvantages of Quantifier Elimination, Reformulation Linear Techniques, Blossoming and Groebner basis methods, our main focus is on algorithms defined by Polya's theorem, Bernstein's theorem and Handelman's theorem. We first formulate polynomial optimization problems as verifying the feasibility of semi-algebraic sets. Then, we discuss how Polya's algorithm, Bernstein's algorithm and Handelman's algorithm reduce the intractable problem of feasibility of semi-algebraic sets to linear and/or semi-definite programming. We apply these algorithms to different problems in robust stability analysis and stability of nonlinear dynamical systems. As one contribution of this paper, we apply Polya's algorithm to the problem of H_infinity control of systems with parametric uncertainty. Numerical examples are provided to compare the accuracy of these algorithms with other polynomial optimization algorithms in the literature.Comment: AIMS Journal of Discrete and Continuous Dynamical Systems - Series

    Robust Stability Analysis of Nonlinear Hybrid Systems

    Get PDF
    We present a methodology for robust stability analysis of nonlinear hybrid systems, through the algorithmic construction of polynomial and piecewise polynomial Lyapunov-like functions using convex optimization and in particular the sum of squares decomposition of multivariate polynomials. Several improvements compared to previous approaches are discussed, such as treating in a unified way polynomial switching surfaces and robust stability analysis for nonlinear hybrid systems

    Convex inner approximations of nonconvex semialgebraic sets applied to fixed-order controller design

    Full text link
    We describe an elementary algorithm to build convex inner approximations of nonconvex sets. Both input and output sets are basic semialgebraic sets given as lists of defining multivariate polynomials. Even though no optimality guarantees can be given (e.g. in terms of volume maximization for bounded sets), the algorithm is designed to preserve convex boundaries as much as possible, while removing regions with concave boundaries. In particular, the algorithm leaves invariant a given convex set. The algorithm is based on Gloptipoly 3, a public-domain Matlab package solving nonconvex polynomial optimization problems with the help of convex semidefinite programming (optimization over linear matrix inequalities, or LMIs). We illustrate how the algorithm can be used to design fixed-order controllers for linear systems, following a polynomial approach

    Rational Optimization using Sum-of-Squares Techniques

    Get PDF
    Motivated by many control applications, this paper deals with the global solutions of unconstrained optimization problems. First, a simple SOS method is presented to find the infimum of a polynomial, which can be handled efficiently using the relevant software tools. The main idea of this method is to introduce a perturbation variable whose approaching to zero results in a solution with any arbitrary precision. The proposed technique is then extended to the case of rational functions. The primary advantages of this approach over the existing ones are its simplicity and capability of treating problems for which the existing methods are not efficient, as demonstrated in three numerical examples

    Help on SOS

    Get PDF
    In this issue of IEEE Control Systems Magazine, Andy Packard and friends respond to a query on determining the region of attraction using sum-of-squares methods

    A unified framework for solving a general class of conditional and robust set-membership estimation problems

    Full text link
    In this paper we present a unified framework for solving a general class of problems arising in the context of set-membership estimation/identification theory. More precisely, the paper aims at providing an original approach for the computation of optimal conditional and robust projection estimates in a nonlinear estimation setting where the operator relating the data and the parameter to be estimated is assumed to be a generic multivariate polynomial function and the uncertainties affecting the data are assumed to belong to semialgebraic sets. By noticing that the computation of both the conditional and the robust projection optimal estimators requires the solution to min-max optimization problems that share the same structure, we propose a unified two-stage approach based on semidefinite-relaxation techniques for solving such estimation problems. The key idea of the proposed procedure is to recognize that the optimal functional of the inner optimization problems can be approximated to any desired precision by a multivariate polynomial function by suitably exploiting recently proposed results in the field of parametric optimization. Two simulation examples are reported to show the effectiveness of the proposed approach.Comment: Accpeted for publication in the IEEE Transactions on Automatic Control (2014

    Relative Entropy Relaxations for Signomial Optimization

    Full text link
    Signomial programs (SPs) are optimization problems specified in terms of signomials, which are weighted sums of exponentials composed with linear functionals of a decision variable. SPs are non-convex optimization problems in general, and families of NP-hard problems can be reduced to SPs. In this paper we describe a hierarchy of convex relaxations to obtain successively tighter lower bounds of the optimal value of SPs. This sequence of lower bounds is computed by solving increasingly larger-sized relative entropy optimization problems, which are convex programs specified in terms of linear and relative entropy functions. Our approach relies crucially on the observation that the relative entropy function -- by virtue of its joint convexity with respect to both arguments -- provides a convex parametrization of certain sets of globally nonnegative signomials with efficiently computable nonnegativity certificates via the arithmetic-geometric-mean inequality. By appealing to representation theorems from real algebraic geometry, we show that our sequences of lower bounds converge to the global optima for broad classes of SPs. Finally, we also demonstrate the effectiveness of our methods via numerical experiments
    • 

    corecore