499 research outputs found

    Robust Geometric Spanners

    Full text link
    Highly connected and yet sparse graphs (such as expanders or graphs of high treewidth) are fundamental, widely applicable and extensively studied combinatorial objects. We initiate the study of such highly connected graphs that are, in addition, geometric spanners. We define a property of spanners called robustness. Informally, when one removes a few vertices from a robust spanner, this harms only a small number of other vertices. We show that robust spanners must have a superlinear number of edges, even in one dimension. On the positive side, we give constructions, for any dimension, of robust spanners with a near-linear number of edges.Comment: 18 pages, 8 figure

    A Spanner for the Day After

    Full text link
    We show how to construct (1+Ξ΅)(1+\varepsilon)-spanner over a set PP of nn points in Rd\mathbb{R}^d that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters Ο‘,Ρ∈(0,1)\vartheta,\varepsilon \in (0,1), the computed spanner GG has O(Ξ΅βˆ’cΟ‘βˆ’6nlog⁑n(log⁑log⁑n)6) O\bigl(\varepsilon^{-c} \vartheta^{-6} n \log n (\log\log n)^6 \bigr) edges, where c=O(d)c= O(d). Furthermore, for any kk, and any deleted set BβŠ†PB \subseteq P of kk points, the residual graph Gβˆ–BG \setminus B is (1+Ξ΅)(1+\varepsilon)-spanner for all the points of PP except for (1+Ο‘)k(1+\vartheta)k of them. No previous constructions, beyond the trivial clique with O(n2)O(n^2) edges, were known such that only a tiny additional fraction (i.e., Ο‘\vartheta) lose their distance preserving connectivity. Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one-dimensional construction in a black box fashion

    Optimal Vertex Fault Tolerant Spanners (for fixed stretch)

    Full text link
    A kk-spanner of a graph GG is a sparse subgraph HH whose shortest path distances match those of GG up to a multiplicative error kk. In this paper we study spanners that are resistant to faults. A subgraph HβŠ†GH \subseteq G is an ff vertex fault tolerant (VFT) kk-spanner if Hβˆ–FH \setminus F is a kk-spanner of Gβˆ–FG \setminus F for any small set FF of ff vertices that might "fail." One of the main questions in the area is: what is the minimum size of an ff fault tolerant kk-spanner that holds for all nn node graphs (as a function of ff, kk and nn)? This question was first studied in the context of geometric graphs [Levcopoulos et al. STOC '98, Czumaj and Zhao SoCG '03] and has more recently been considered in general undirected graphs [Chechik et al. STOC '09, Dinitz and Krauthgamer PODC '11]. In this paper, we settle the question of the optimal size of a VFT spanner, in the setting where the stretch factor kk is fixed. Specifically, we prove that every (undirected, possibly weighted) nn-node graph GG has a (2kβˆ’1)(2k-1)-spanner resilient to ff vertex faults with Ok(f1βˆ’1/kn1+1/k)O_k(f^{1 - 1/k} n^{1 + 1/k}) edges, and this is fully optimal (unless the famous Erdos Girth Conjecture is false). Our lower bound even generalizes to imply that no data structure capable of approximating distGβˆ–F(s,t)dist_{G \setminus F}(s, t) similarly can beat the space usage of our spanner in the worst case. We also consider the edge fault tolerant (EFT) model, defined analogously with edge failures rather than vertex failures. We show that the same spanner upper bound applies in this setting. Our data structure lower bound extends to the case k=2k=2 (and hence we close the EFT problem for 33-approximations), but it falls to Ξ©(f1/2βˆ’1/(2k)β‹…n1+1/k)\Omega(f^{1/2 - 1/(2k)} \cdot n^{1 + 1/k}) for kβ‰₯3k \ge 3. We leave it as an open problem to close this gap.Comment: To appear in SODA 201

    Fault-Tolerant Spanners: Better and Simpler

    Full text link
    A natural requirement of many distributed structures is fault-tolerance: after some failures, whatever remains from the structure should still be effective for whatever remains from the network. In this paper we examine spanners of general graphs that are tolerant to vertex failures, and significantly improve their dependence on the number of faults rr, for all stretch bounds. For stretch kβ‰₯3k \geq 3 we design a simple transformation that converts every kk-spanner construction with at most f(n)f(n) edges into an rr-fault-tolerant kk-spanner construction with at most O(r3log⁑n)β‹…f(2n/r)O(r^3 \log n) \cdot f(2n/r) edges. Applying this to standard greedy spanner constructions gives rr-fault tolerant kk-spanners with O~(r2n1+2k+1)\tilde O(r^{2} n^{1+\frac{2}{k+1}}) edges. The previous construction by Chechik, Langberg, Peleg, and Roddity [STOC 2009] depends similarly on nn but exponentially on rr (approximately like krk^r). For the case k=2k=2 and unit-length edges, an O(rlog⁑n)O(r \log n)-approximation algorithm is known from recent work of Dinitz and Krauthgamer [arXiv 2010], where several spanner results are obtained using a common approach of rounding a natural flow-based linear programming relaxation. Here we use a different (stronger) LP relaxation and improve the approximation ratio to O(log⁑n)O(\log n), which is, notably, independent of the number of faults rr. We further strengthen this bound in terms of the maximum degree by using the \Lovasz Local Lemma. Finally, we show that most of our constructions are inherently local by designing equivalent distributed algorithms in the LOCAL model of distributed computation.Comment: 17 page

    Incubators vs Zombies: Fault-Tolerant, Short, Thin and Lanky Spanners for Doubling Metrics

    Full text link
    Recently Elkin and Solomon gave a construction of spanners for doubling metrics that has constant maximum degree, hop-diameter O(log n) and lightness O(log n) (i.e., weight O(log n)w(MST). This resolves a long standing conjecture proposed by Arya et al. in a seminal STOC 1995 paper. However, Elkin and Solomon's spanner construction is extremely complicated; we offer a simple alternative construction that is very intuitive and is based on the standard technique of net tree with cross edges. Indeed, our approach can be readily applied to our previous construction of k-fault tolerant spanners (ICALP 2012) to achieve k-fault tolerance, maximum degree O(k^2), hop-diameter O(log n) and lightness O(k^3 log n)
    • …
    corecore