1,360 research outputs found

    Time-Varying Input and State Delay Compensation for Uncertain Nonlinear Systems

    Full text link
    A robust controller is developed for uncertain, second-order nonlinear systems subject to simultaneous unknown, time-varying state delays and known, time-varying input delays in addition to additive, sufficiently smooth disturbances. An integral term composed of previous control values facilitates a delay-free open-loop error system and the development of the feedback control structure. A stability analysis based on Lyapunov-Krasovskii (LK) functionals guarantees uniformly ultimately bounded tracking under the assumption that the delays are bounded and slowly varying

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    BIBO stabilisation of continuous time takagi sugeno systems under persistent perturbations and input saturation

    Full text link
    [EN] This paper presents a novel approach to the design of fuzzy state feedback controllers for continuous-time non-linear systems with input saturation under persistent perturbations. It is assumed that all the states of the Takagi¿Sugeno (TS) fuzzy model representing a non-linear system are measurable. Such controllers achieve bounded input bounded output (BIBO) stabilisation in closed loop based on the computation of inescapable ellipsoids. These ellipsoids are computed with linear matrix inequalities (LMIs) that guarantee stabilisation with input saturation and persistent perturbations. In particular, two kinds of inescapable ellipsoids are computed when solving a multiobjective optimization problem: the maximum volume inescapable ellipsoids contained inside the validity domain of the TS fuzzy model and the smallest inescapable ellipsoids which guarantee a minimum *-norm (upper bound of the 1-norm) of the perturbed system. For every initial point contained in the maximum volume ellipsoid, the closed loop will enter the minimum *-norm ellipsoid after a finite time, and it will remain inside afterwards. Consequently, the designed controllers have a large domain of validity and ensure a small value for the 1-norm of closed loop.The authors wish to thank the Editor-in-Chief and the anonymous reviewers for their valuable comments and suggestions. This work has been funded by Ministerio de Economia y Competitividad (Spain) through the research project DPI2015-71443-R and by Generalitat Valenciana (Valencia, Spain) through the research project GV/2017/029.Salcedo-Romero-De-Ávila, J.; Martínez Iranzo, MA.; Garcia-Nieto, S.; Hilario Caballero, A. (2018). BIBO stabilisation of continuous time takagi sugeno systems under persistent perturbations and input saturation. International Journal of Applied Mathematics and Computer Science (Online). 28(3):457-472. https://doi.org/10.2478/amcs-2018-0035S45747228

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency

    Fuzzy control turns 50: 10 years later

    Full text link
    In 2015, we celebrate the 50th anniversary of Fuzzy Sets, ten years after the main milestones regarding its applications in fuzzy control in their 40th birthday were reviewed in FSS, see [1]. Ten years is at the same time a long period and short time thinking to the inner dynamics of research. This paper, presented for these 50 years of Fuzzy Sets is taking into account both thoughts. A first part presents a quick recap of the history of fuzzy control: from model-free design, based on human reasoning to quasi-LPV (Linear Parameter Varying) model-based control design via some milestones, and key applications. The second part shows where we arrived and what the improvements are since the milestone of the first 40 years. A last part is devoted to discussion and possible future research topics.Guerra, T.; Sala, A.; Tanaka, K. (2015). Fuzzy control turns 50: 10 years later. Fuzzy Sets and Systems. 281:162-182. doi:10.1016/j.fss.2015.05.005S16218228

    A flotation control system to optimise performance using peak air recovery

    Get PDF
    Automatic control of industrial flotation cells and circuits presents a set of significant challenges due to the number of variables, the sensitivity of flotation cells to variation in these variables and the complexity of predicting flotation performance and/or developing a strategy for optimisation. Air recovery, a measure of froth stability, has been shown to pass through a peak as flotation cell aeration increases. Furthermore, the air rate at which the peak air recovery (PAR) is obtained results in optimal flotation performance, whether improved concentrate grade, recovery or both grade and recovery. Peak air recovery, therefore, presents a clear optimising control strategy for the operation of flotation cells which is generic to all flotation cells regardless of position in the flotation circuit. In this study, a novel control system based on PAR is developed and demonstrated using a large continuous laboratory flotation cell. In this study, a direct search optimisation algorithm based on the GSS (generating set search) methodology was developed using a 70 l continuous flotation cell operating with a two-phase system (surfactant solution and air only). Characterisation of the laboratory system showed that it was stable for up to 6 h and exhibited a reproducible peak in air recovery. A dynamic model of the response of the system with regards to changes in air recovery was developed that allowed simulations of the proposed optimising control system to be carried out. The optimisation algorithm was then applied to the experimental system. The trialled GSS algorithm was shown to find the PAR air rate when starting above, below and at the PAR air rate, and additionally with a disturbance introduced into the system. While the direct search approach can be slow, it is simple and robust. This demonstrates an innovative approach to optimising control for froth flotation and is the first application of froth stability maximisation for flotation control

    Survey of Gain-Scheduling Analysis & Design

    Get PDF
    The gain-scheduling approach is perhaps one of the most popular nonlinear control design approaches which has been widely and successfully applied in fields ranging from aerospace to process control. Despite the wide application of gain-scheduling controllers and a diverse academic literature relating to gain-scheduling extending back nearly thirty years, there is a notable lack of a formal review of the literature. Moreover, whilst much of the classical gain-scheduling theory originates from the 1960s, there has recently been a considerable increase in interest in gain-scheduling in the literature with many new results obtained. An extended review of the gainscheduling literature therefore seems both timely and appropriate. The scope of this paper includes the main theoretical results and design procedures relating to continuous gain-scheduling (in the sense of decomposition of nonlinear design into linear sub-problems) control with the aim of providing both a critical overview and a useful entry point into the relevant literature
    corecore