1,664 research outputs found

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    A Mobile Wireless Channel State Recognition Algorihm: Introduction, Definition, and Verification - Sensing for Cognitive Environmental Awareness

    Get PDF
    This research includes mobile wireless systems limited by time and frequency dispersive channels. A blind mobile wireless channel (MWC) state recognition (CSR) algorithm that detects hidden coherent nonselective and noncoherent selective processes is verified. Because the algorithm is blind, it releases capacity based on current channel state that traditionally is fixed and reserved for channel gain estimation and distortion mitigation. The CSR algorithm enables cognitive communication system control including signal processing, resource allocation/deallocation, or distortion mitigation selections based on channel coherence states. MWC coherent and noncoherent states, ergodicity, stationarity, uncorrelated scattering, and Markov processes are assumed for each time block. Furthermore, a hidden Markov model (HMM) is utilized to represent the statistical relationships between hidden dispersive processes and observed receive waveform processes. First-order and second-order statistical extracted features support state hard decisions which are combined in order to increase the accuracy of channel state estimates. This research effort has architected, designed, and verified a blind statistical feature recognition algorithm capable of detecting coherent nonselective, single time selective, single frequency selective, or dual selective noncoherent states. A MWC coherence state model (CSM) was designed to represent these hidden dispersive processes. Extracted statistical features are input into a parallel set of trained HMMs that compute state sequence conditional likelihoods. Hard state decisions are combined to produce a single most likely channel state estimate for each time block. To verify the CSR algorithm performance, combinations of hidden state sequences are applied to the CSR algorithm and verified against input hidden state sequences. State sequence recognition accuracy sensitivity was found to be above 99% while specificity was determined to be above 98% averaged across all features, states, and sequences. While these results establish the feasibility of a MWC blind CSR algorithm, optimal configuration requires future research to further improve performance including: 1) characterizing the range of input signal configurations, 2) waveform feature block size reduction, 3) HMM parameter tracking, 4) HMM computational complexity and latency reduction, 5) feature soft decision combining, 6) recursive implementation, 7) interfacing with state based mobile wireless communication control processes, and 8) extension to wired or wireless waveform recognition

    Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols

    Full text link
    In this paper, we describe direct-sequence code-division multiple-access (DS-CDMA) systems with quadriphase-shift keying in which channel estimation, coherent demodulation, and decoding are iteratively performed without the use of any training or pilot symbols. An expectation-maximization channel-estimation algorithm for the fading amplitude, phase, and the interference power spectral density (PSD) due to the combined interference and thermal noise is proposed for DS-CDMA systems with irregular repeat-accumulate codes. After initial estimates of the fading amplitude, phase, and interference PSD are obtained from the received symbols, subsequent values of these parameters are iteratively updated by using the soft feedback from the channel decoder. The updated estimates are combined with the received symbols and iteratively passed to the decoder. The elimination of pilot symbols simplifies the system design and allows either an enhanced information throughput, an improved bit error rate, or greater spectral efficiency. The interference-PSD estimation enables DS-CDMA systems to significantly suppress interference.Comment: To appear, IEEE Transactions on Wireless Communication

    Space-Time Trellis and Space-Time Block Coding Versus Adaptive Modulation and Coding Aided OFDM for Wideband Channels

    No full text
    Abstract—The achievable performance of channel coded spacetime trellis (STT) codes and space-time block (STB) codes transmitted over wideband channels is studied in the context of schemes having an effective throughput of 2 bits/symbol (BPS) and 3 BPS. At high implementational complexities, the best performance was typically provided by Alamouti’s unity-rate G2 code in both the 2-BPS and 3-BPS scenarios. However, if a low complexity implementation is sought, the 3-BPS 8PSK space-time trellis code outperfoms the G2 code. The G2 space-time block code is also combined with symbol-by-symbol adaptive orthogonal frequency division multiplex (AOFDM) modems and turbo convolutional channel codecs for enhancing the system’s performance. It was concluded that upon exploiting the diversity effect of the G2 space-time block code, the channel-induced fading effects are mitigated, and therefore, the benefits of adaptive modulation erode. In other words, once the time- and frequency-domain fades of the wideband channel have been counteracted by the diversity-aided G2 code, the benefits of adaptive modulation erode, and hence, it is sufficient to employ fixed-mode modems. Therefore, the low-complexity approach of mitigating the effects of fading can be viewed as employing a single-transmitter, single-receiver-based AOFDM modem. By contrast, it is sufficient to employ fixed-mode OFDM modems when the added complexity of a two-transmitter G2 scheme is affordable

    Comb-type pilot-aided OFDM channel estimation for underground WLAN communications

    Get PDF
    corecore