4,941 research outputs found

    Fractional - order system modeling and its applications

    Get PDF
    In order to control or operate any system in a closed-loop, it is important to know its behavior in the form of mathematical models. In the last two decades, a fractional-order model has received more attention in system identification instead of classical integer-order model transfer function. Literature shows recently that some techniques on fractional calculus and fractional-order models have been presenting valuable contributions to real-world processes and achieved better results. Such new developments have impelled research into extensions of the classical identification techniques to advanced fields of science and engineering. This article surveys the recent methods in the field and other related challenges to implement the fractional-order derivatives and miss-matching with conventional science. The comprehensive discussion on available literature would help the readers to grasp the concept of fractional-order modeling and can facilitate future investigations. One can anticipate manifesting recent advances in fractional-order modeling in this paper and unlocking more opportunities for research

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Fractional Order Fuzzy Control of Nuclear Reactor Power with Thermal-Hydraulic Effects in the Presence of Random Network Induced Delay and Sensor Noise having Long Range Dependence

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Nonlinear state space modeling of a nuclear reactor has been done for the purpose of controlling its global power in load following mode. The nonlinear state space model has been linearized at different percentage of reactor powers and a novel fractional order (FO) fuzzy proportional integral derivative (PID) controller is designed using real coded Genetic Algorithm (GA) to control the reactor power level at various operating conditions. The effectiveness of using the fuzzy FOPID controller over conventional fuzzy PID controllers has been shown with numerical simulations. The controllers tuned with the highest power models are shown to work well at other operating conditions as well; over the lowest power model based design and hence are robust with respect to the changes in nuclear reactor operating power levels. This paper also analyzes the degradation of nuclear reactor power signal due to network induced random delays in shared communication network and due to sensor noise while being fed-back to the Reactor Regulating System (RRS). The effect of long range dependence (LRD) which is a practical consideration for the stochastic processes like network induced delay and sensor noise has been tackled by optimum tuning of FO fuzzy PID controllers using GA, while also taking the operating point shift into consideration

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    A Detailed Investigation into Low-Level Feature Detection in Spectrogram Images

    Get PDF
    Being the first stage of analysis within an image, low-level feature detection is a crucial step in the image analysis process and, as such, deserves suitable attention. This paper presents a systematic investigation into low-level feature detection in spectrogram images. The result of which is the identification of frequency tracks. Analysis of the literature identifies different strategies for accomplishing low-level feature detection. Nevertheless, the advantages and disadvantages of each are not explicitly investigated. Three model-based detection strategies are outlined, each extracting an increasing amount of information from the spectrogram, and, through ROC analysis, it is shown that at increasing levels of extraction the detection rates increase. Nevertheless, further investigation suggests that model-based detection has a limitation—it is not computationally feasible to fully evaluate the model of even a simple sinusoidal track. Therefore, alternative approaches, such as dimensionality reduction, are investigated to reduce the complex search space. It is shown that, if carefully selected, these techniques can approach the detection rates of model-based strategies that perform the same level of information extraction. The implementations used to derive the results presented within this paper are available online from http://stdetect.googlecode.com

    Study on the generalized formulations with the aim to reproduce the viscoelastic dynamic behavior of polymers

    Get PDF
    Appropriate modelling of the real behavior of viscoelastic materials is of fundamental importance for correct studies and analyses of structures and components where such materials are employed. In this paper, the potential to employ a generalized Maxwell model and the relative fraction derivative model is studied with the aim to reproduce the experimental behavior of viscoelastic materials. For both models, the advantage of using the pole-zero formulation is demonstrated and a specifically constrained identification procedure to obtain the optimum parameters set is illustrated. Particular emphasis is given on the ability of the models to adequately fit the experimental data with a minimum number of parameters, addressing the possible computational issues. The question arises about the minimum number of experimental data necessary to estimate the material behavior in a wide frequency range, demonstrating that accurate results can be obtained by knowing only the data of the upper and low frequency plateaus plus the ones at the loss tangent peak

    Acta Cybernetica : Volume 25. Number 1.

    Get PDF

    Modelling Long-Run Trends and Cycles in Financial Time Series Data

    Get PDF
    This paper proposes a very general time series framework to capture the long-run behaviour of financial series. The suggested model includes linear and non-linear time trends, and stationary and nonstationary processes based on integer and/or fractional degrees of differentiation. Moreover, the spectrum is allowed to contain more than a single pole or singularity, occurring at zero and non-zero (cyclical) frequencies. This model is used to analyse four annual time series with a long span, namely dividends, earnings, interest rates and long-term government bond yields. The results indicate that the four series exhibit fractional integration with one or two poles in the spectrum. A forecasting comparison shows that a model with a non-linear trend along with fractional integration outperforms alternative models over long horizons.fractional integration, financial time series data, trends, cycles
    corecore